Sains Malaysiana 50(11)(2021): 3205-3217

http://doi.org/10.17576/jsm-2021-5011-05

 

 

Petrography and Geochemistry of Dolomites of Samanasuk Formation, Dara Adam Khel Section, Kohat Ranges, Pakistan

(Petrografi dan Geokimia Dolomit Formasi Samanasuk, Bahagian Dara Adam Khel, Kohat Ranges, Pakistan)

 

EMAD ULLAH KHAN1,2, ABBAS ALI NASEEM1* MARYAM SALEEM1,3, FAISAL REHMAN1, SYED WASEEM SAJJAD1, WAQAR AHMAD4 & TAHIR AZEEM1

 

1Department of Earth Sciences, Quiad-e-Azam University Islamabad, Pakistan

 

2Department of Geology, Abdul Wali Khan University Mardan, KP, Pakistan

 

3Department of Earth & Environmental Sciences, Bahria University, Islamabad, Pakistan

 

4Department of Earth & Atmospheric Sciences, University of Alberta, Canada

 

Received: 11 November 2020/Accepted: 8 March 2021

 

ABSTRACT

Replacement dolomite occurs in Jurassic Samanasuk Formation in Dara Adam khel area of Kohat ranges, North-Western Himalayas, Pakistan. This study, for the first time, document the process of dolomitization and evolution of strata bound dolomitic bodies. Field investigation, petrography and geochemistry helped in unraveling the formation of several dolomitic bodies. Petrographically dolomites comprises of: (1) medium grain crystalline planer subhedral dolomite (Dol-I); (2) fine grained crystalline anhedral non-planer dolomite rhombs (Dol-II); (3) medium to coarse grained crystalline subhedral-anhedral non-planer dolomite (Dol-III) and coarse to very coarse grained crystalline saddle dolomite cements (SD). The saddle dolomites (SD) postdate the replacement dolomites and precede telogenetic calcite (TC) cements. Stable O and C isotope analysis shows that these dolomites have δ18Ovpdb ranging from -4.09% to -10.4 whereas the δ13Cvpdb ranges from +0.8 to +2.51. Major and trace elements data show that Sr concentrations of 145.5 to 173 ppm; Fe contents of 2198 to 8215 ppm; and Mn contents of 93.5 to 411 ppm. Petrographically replacive dolomites, saddle dolomite, and δ18Ovpdb values depicts neomorphism of replacement dolomites that were formed earlier were exposed to late dolomitizing fluids. As a result of basin uplift during the Himalayan orogeny in Eocene time, dolomitization event was stopped through occurrence of meteoric water. The Main Boundary Thrust (MBT) and its splays were most likely essential conduits that channelized dolomitizing fluids from siliciclastic rocks that were buried deeply into the Jurassic carbonates rocks, leading to more extreme dolomitization.

 

Keywords: Dolomitization; hydrothermal; isotope; saddle dolomite

 

ABSTRAK

Dolomit penggantian berlaku dalam Formasi Jura Samanasuk di kawasan khel Dara Adam, banjaran Kohat, Barat Laut Himalaya, Pakistan. Kajian ini, buat pertama kalinya, mendokumentasikan proses pendolomitan dan evolusi jasad dolomitik terikat strata. Penyelidikan lapangan, petrografi dan geokimia membantu merungkai pembentukan beberapa jasad dolomitik. Dolomit petrografi terdiri daripada: (1) dolomit subhedron perata kristal butiran sederhana (Dol-I); (2) rombus dolomit bukan perata anhedron kristal butiran halus (Dol-II); (3) dolomit bukan perata subhedron-anhedron kristal butiran sederhana hingga kasar (Dol-III) dan simen dolomit pelana kristal kasar hingga kasar (SD). Pelana dolomit (SD) menunda penggantian dolomit dan mendahului telogenetik kalsit (TC) simen. Analisis isotop O dan C yang stabil menunjukkan bahawa dolomit ini mempunyai δ18Ovpdb antara -4.09% hingga -10.4 sedangkan δ13Cvpdb berkisar antara +0.8 hingga +2.51. Data unsur utama dan unsur surih menunjukkan bahawa kepekatan Sr dari 145.5 hingga 173 ppm; kandungan Fe dari 2198 hingga 8215 ppm; dan kandungan Mn 93.5 hingga 411 ppm. Nilai dolomit pengganti petrografi, dolomit pelana dan nilai δ18Ovpdb menggambarkan neomorfisme penggantian dolomit yang terbentuk sebelumnya terdedah kepada cecair pendolomitan lewat. Akibat peningkatan lembangan semasa orogeni Himalaya pada usia Eosen, peristiwa pendolomitan dihentikan akibat terjadinya air meteor. Sungkup Sempadan Utama (MBT) dan megarnya kemungkinan besar merupakan saluran penting yang menyalurkan cecair pendolomitan daripada batuan silisiklastik yang terkubur jauh ke dalam batu karbonat Jura, menyebabkan pendolomitan yang lebih ekstrem.

 

Kata kunci: Hidroterma; isotop; pendolomitan; pelana dolomit

 

REFERENCES

Adabi, M.H. 2009. Multistage dolomitization of upper jurassic mozduran formation, Kopet-Dagh Basin, n.e. Iran. Carbonates and Evaporites 24(1): 16-32.

Adams, A.E. & MacKenzie, W.S. 2001. A Colour Atlas of Carbonate Sediments and Rocks Under the Microscope. London: Manson Publishing. p. 180.

Alam, I. 2008. Structure framework of the Marwat and Khisor range of Pakistan. PhD Thesis (Pub). NCE in Geology University of Peshawar, Pakistan. p. 132 (Unpublished).

Amthor, J.E. & Friedman, G.M. 1991. Dolomite-rock textures and secondary porosity development in Ellenburger Group carbonates (Lower Ordovician), west Texas and southeastern New Mexico. Sedimentology 38(2): 343-362.

Boggs Jr., S. & Boggs, S. 2009. Petrology of Sedimentary Rocks. Cambridge: Cambridge University Press.

Bontognali, T.R.R. 2008. Microbial dolomite formation within exopolymeric substances, PhD dissertation, ETH ZURICH. p. 141 (Unpublished).

Braithwaite, C.J., Rizzi, G. & Darke, G. 2004. The geometry and petrogenesis of dolomite hydrocarbon reservoirs: Introduction. Geological Society, London, Special Publications 235(1): 1-6.

Chatterjee, S. & Bajpai, S. 2016. India’s northward drift from Gondwana to Asia during the late Cretaceous-Eocene. Proceedings of Indian National Science Academy 82: 479- 487.

Chatterjee, S., Goswami, A. & Christopher, R. 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian Plate during its northward flight from Gondwana to Asia. Gondwana Research 23: 238-267.

Chatterjee, S. & Scotese, C.R. 2010. The wandering Indian plate and its changing biogeography during the Late Cretaceous–Early Tertiary period. In New Aspects of Mesozoic Biogeography, edited by Bandopadhyay, S. Berlin-Heidelberg, Germany: Springer-Verlag. pp. 105-126.

Chen, D., Qing, H. & Yang, C. 2004. Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology 51(5): 1029-1051.

Chuan, G., Zhao, C., Shaofeng, D., Yixiong, Q. & Cunge, l. 2017. Early dolomitisation
of the Lower-Middle Ordovician cyclic carbonates in northern Tarim Basin, NW China. Science China Earth Sciences 60(7): 1283-1298.

Davies, G.R. & Smith Jr., L.B. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin 90: 1641-1690.

Dickson, J.A.D. 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research 36(2): 491-505.

Fairbridge, R.W. 1957. The dolomite question: Regional aspects of carbonate deposition. Soc. Econ. Paleont. Mineral. 5: 124-178.

Fu, Q., Qing, H. & Bergman, K.M. 2006. Dolomitization of the Middle Devonian Winnipegosis carbonates in south-central Saskatchewan, Canada. Sedimentology 53(4): 825-848.

Fürsich, F.T., Callomon, J.H., Pandey, D.K. & Jaitly, A.K. 2004. Environments and faunal patterns in the Kachchh rift basin, western India, during the Jurassic. Rivista Italiana di Paleontologia e Stratigrafia 110: 181-190.

Gasparrini, M., Bechstädt, T. & Boni, M. 2006. Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Marine and Petroleum Geology 23(5): 543-568.

Ghauri, A.A.K., Rehman, O. & Rehman, S. 1983. A new structural model of the southern slopes of kotal pass kohat division, NWFP, Pakistan. Geological Bulletin. University of Peshawar 16: 97-104.

Given, R.K. & Lohmann, K.C. 1985. Derivation of the original isotopic composition of Permian marine cements. Journal of Sedimentary Research 55(3): 430-439.

Gomez-Rivas, E., Warber, K., Kulzer, F., Bons, P.D., Koehn, D. & Martín-Martín, J.D. 2012. Structural evolution of the Benicàssim area (Maestrat basin, NE Spain): insights from fracture and vein analysis. Geogaceta 51(7): 79-82.

Gregg, J.M. & Shelton, K.L. 1990. Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations (Cambrian), southeastern Missouri. Journal of Sedimentary Research 60(4): 549-562.

Henderson, A.L., Najman, Y., Parrish, R., Mark, D.F. & Foster, G.L. 2011. Constraints to the timing of India-Eurasia collision; A re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus-Tsangpo Suture Zone, Ladakh, India. Earth-Science Reviews 106(3-4): 265-292.

Hauck, M.L., Nelson, K.D., Brown, L.D., Zhao, W. & Ross, A.R. 1998. Crustal structure of the Himalayan orogen at 90 east longitude from Project INDEPTH deep reflection profiles. Tectonics 17(4): 481-500.

Hsü, K.J. 1967. Chemistry of dolomite formation. In Carbonate Rocks, edited by Chilingar, G.V. Bissel, H.J. & Fairbridge, R.W. Elsevier, Amsterdam. pp. 169-191.

Huang, S.J., Shi, H., Mao, X.D., Zhang, M., Shen, L.C. & Wu, W.H. 2003. Diagenetic alteration of Earlier Palaeozoic marine carbonate and preservation for the formation of sea water. Journal-Chengdu University of Technology 30: 9-18 (in Chinese with English abstract).

Kakemem, U., Jafarian, A., Husinec, A., Adabi, M.H. & Mahmoudi, A. 2021. Facies, sequence framework, and reservoir quality along a Triassic carbonate ramp: Kangan Formation, South Pars Field, Persian Gulf Superbasin. Journal of Petroleum Science and Engineering 198: 108166.

Koeshidayatullah, A., Corlett, H., Stacey, J., Swart, P.K., Boyce, A. & Hollis, C. 2020. Origin and evolution of fault-controlled hydrothermal dolomitization fronts: A new insight. Earth and Planetary Science Letters 541: 116291.

Khan, M.A., Ahmed, R., Raza, H.A. & Kemal, A. 1986. Geology of petroleum in Kohat-Potwar Depression, Pakistan. AAPG Bulletin 70(4): 396-414.

Land, L.S. 1998. Failure to precipitate dolomite at 25 °C from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry 4(3): 361-368.

Lavé, J. & Avouac, J.P. 2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth 105(B3): 5735-5770.

Leech, M.L., Singh, S., Jain, A.K., Klemperer, S.L. & Manickavasagam, R.M. 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth and Planetary Science Letters 234(1-2): 83-97.

Lucia, F.J. & Major, R.P. 1994. Porosity evolution through hypersaline reflux dolomitization. Dolomites: A Volume in Honour of Dolomieu, edited by Purser, B., Tucker, M. & Zenger, D. Wiley Online Library. pp. 325-341. https://doi.org/10.1002/9781444304077.ch18.

Machel, H.G. & Anderson, J.H. 1989. Pervasive subsurface dolomitization of the Nisku Formation in central Alberta. Journal of Sedimentary Research 59(6): 891-911. https://doi.org/10.1306/212F90AC-2B24-11D7-8648000102C1865D.

Machel, H.G. & Lonnee, J. 2002. Hydrothermal dolomite - A product of poor definition and imagination. Sedimentary Geology 152(3-4): 163-171.

Martín-Martín, J.D., Gomez-Rivas, E., Bover-Arnal, T., Travé, A., Salas, R., MorenoBedmar, J.A., Tomás, S., Corbella, M., Teixell, A., Vergés, J. & Stafford, S.L. 2013. The upper Aptian-lower Albian syn-rift carbonate succession of the southern Maestrat Basin (Spain): Facies architecture and fault-controlled strata-bound dolostones. Cretaceous Research 41: 217-236.

Mazzullo, S.J. 1992. Geochemical and neomorphic alteration of dolomite: A review. Carbonates and Evaporites 7(1): 21-37.

McDougall, J.W., Hussain, A. & Yeats, R.S. 1993. The main boundary thrust and propagation of deformation into the foreland fold-and-thrust belt in northern Pakistan near the Indus River. Geological Society, London, Special Publications 74(1): 581-588.

McKenzie, D.P. & Selater, J.G. 1973. The evolution of the Indian Ocean. Scientific American 228(5): 62-74.

Montaron, B. 2008. Confronting carbonates. Oil Review Middle East 5(1): 132-135.

Ngia, N.R., Hu, M. & Gao, D. 2019. Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim Basin, NW China. Journal of Asian Earth Sciences 172: 359-382.

O'Brien, P.J., Zotov, N., Law, R., Khan, M.A. & Jan, M.Q. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology 29(5): 435-438.

Purser, B.H., Tucker, M.E. & Zenger, D.H. 1994. Problems, progress and future research concerning dolomites and dolomitization. Dolomites: A Volume in Honour of Dolomieu 21: 3-20.

Rehman, H.U., Seno, T., Yamamoto, H. & Khan, T. 2011. Timing of collision of the Kohistan–Ladakh Arc with India and Asia: Debate. Island Arc 20(3): 308-328. https://doi.org/10.1111/j.1440-1738.2011.00774.x.

Ronchi, P., Masetti, D., Tassan, S. & Camocino, D. 2012. Hydrothermal dolomitization in platform and basin carbonate successions during thrusting: A hydrocarbon reservoir analogue (Mesozoic of Venetian Southern Alps, Italy). Marine and Petroleum Geology 29(1): 68-89.

Rosenbaum, J. & Sheppard, S.M.F. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta 50(6): 1147-1150.

Saboor, A., Haneef, M., Hanif, M. & Swati, M.A.F. 2020. Sedimentological attributes of the Middle Jurassic peloids-dominated carbonates of eastern Tethys, lesser Himalayas, Pakistan. Carbonates and Evaporites 35(4): 1-17.

Shah, M.M., Ahmed, W., Ahsan, N. & Lisa, M. 2016. Fault-controlled, bedding-parallel dolomite in the middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur area (North Pakistan): Petrography, geochemistry, and petrophysical characteristics. Arabian Journal of Geosciences 9(5): 405.

Sibley, D.F. & Gregg, J.M. 1987. Classification of dolomite rock textures. Journal of Sedimentary Research 57(6): 967-975.

Swennen, R., Dewit, J., Fierens, E., Muchez, P., Shah, M., Nader, F. & Hunt, D. 2012. Multiple dolomitization events along the Pozalagua Fault (Pozalagua Quarry, Basque–Cantabrian Basin, Northern Spain). Sedimentology 59(4): 1345-1374.

Tahirkheli, R.A.K. 1982. Geology of the Himalaya, Karakoram and Hindukush in Pakistan. Special Issue, Geological Bulletin of the University of Peshawar 15. p. 51.

Tahirkheli, R.A.K. 1979. Geology of Kohistan and adjoining Eurasian and Indo-Pakistan continents, Pakistan. In Geology of Kohistan, edited by Tahirkheli, R.A.K. & Jan, M.Q. Special Issue, Geological Bulletin of the University of Peshawar 11. pp. 1-30.

Tucker, M.E. & Wright, V.P. 1990. Carbonate Sedimentology. Oxford: Blackwell Publishing Ltd.

Ullah Khan, E., Saleem, M., Naseem, A.A., Ahmad, W., Yaseen, M. & Khan, T.U. 2020. Microfacies analysis, diagenetic overprints, geochemistry, and reservoir quality of the Jurassic Samanasuk Formation at the Kahi Section, Nizampur Basin, NW Himalayas, Pakistan. Carbonates and Evaporites 35(3): 1-17.

Veizer, J. 1983. Trace elements and isotopes in sedimentary carbonates. Reviews in Mineralogy 11: 265-300.

Wadood, B., Khan, S., Liu, Y., Li, H. & Rahman, A. 2021. Investigating the impact of diagenesis on reservoir quality of the Jurassic shallow shelfal carbonate deposits: Kala Chitta Range, North Pakistan. Geological Journal 56(2): 1167-1186.

White, D.E. 1957. Thermal waters of volcanic origin. Geological Society of America Bulletin 68(12): 637-1658.

Yaseen, M., Wahid, S., Ahmad, S., Rehman, G., Ahmad, J., Anjum, M.N. & Mehmood, M. 2021. Tectonic evolution, prospectivity and structural studies of the hanging wall of Main Boundary Thrust along Akhurwal-Kohat transect, Khyber Pakhtunkhwa: Implications for future exploration. Arabian Journal of Geosciences 14(4): 1-17.

 

*Corresponding author; email: abbasaliqau@gmail.com

 

 

 

 

previous