Sains Malaysiana 50(11)(2021):
3205-3217
http://doi.org/10.17576/jsm-2021-5011-05
Petrography
and Geochemistry of Dolomites of Samanasuk Formation, Dara Adam Khel Section,
Kohat Ranges, Pakistan
(Petrografi
dan Geokimia Dolomit Formasi Samanasuk, Bahagian Dara Adam Khel, Kohat Ranges,
Pakistan)
EMAD ULLAH KHAN1,2, ABBAS
ALI NASEEM1* MARYAM SALEEM1,3, FAISAL REHMAN1,
SYED WASEEM SAJJAD1, WAQAR AHMAD4 & TAHIR AZEEM1
1Department of Earth Sciences, Quiad-e-Azam University
Islamabad, Pakistan
2Department of Geology, Abdul Wali Khan University Mardan,
KP, Pakistan
3Department of Earth & Environmental Sciences, Bahria
University, Islamabad, Pakistan
4Department of Earth & Atmospheric Sciences, University
of Alberta, Canada
Received: 11 November 2020/Accepted:
8 March 2021
ABSTRACT
Replacement dolomite occurs in Jurassic Samanasuk Formation
in Dara Adam khel area of Kohat ranges, North-Western Himalayas, Pakistan. This
study, for the first time, document the process of dolomitization and evolution
of strata bound dolomitic bodies. Field investigation, petrography and
geochemistry helped in unraveling the formation of several dolomitic bodies.
Petrographically dolomites comprises of: (1) medium grain crystalline planer
subhedral dolomite (Dol-I); (2) fine grained crystalline anhedral non-planer
dolomite rhombs (Dol-II); (3) medium to coarse grained crystalline subhedral-anhedral
non-planer dolomite (Dol-III) and coarse to very coarse
grained crystalline saddle dolomite cements (SD). The saddle dolomites
(SD) postdate the replacement dolomites and precede telogenetic calcite (TC)
cements. Stable O and C isotope analysis shows that these dolomites have δ18Ovpdb ranging from -4.09% to -10.4 whereas the δ13Cvpdb ranges
from +0.8 to +2.51. Major and trace elements data show that Sr concentrations
of 145.5 to 173 ppm; Fe contents of 2198 to 8215 ppm; and Mn contents of 93.5
to 411 ppm. Petrographically replacive dolomites, saddle dolomite, and δ18Ovpdb values depicts neomorphism of replacement dolomites that were formed earlier
were exposed to late dolomitizing fluids. As a result of basin uplift during
the Himalayan orogeny in Eocene time, dolomitization event was stopped through
occurrence of meteoric water. The Main Boundary Thrust (MBT) and its splays
were most likely essential conduits that channelized dolomitizing fluids from
siliciclastic rocks that were buried deeply into the Jurassic carbonates rocks,
leading to more extreme dolomitization.
Keywords: Dolomitization; hydrothermal; isotope; saddle
dolomite
ABSTRAK
Dolomit penggantian berlaku dalam Formasi Jura Samanasuk di
kawasan khel Dara Adam, banjaran Kohat, Barat Laut Himalaya, Pakistan. Kajian
ini, buat pertama kalinya, mendokumentasikan proses pendolomitan dan evolusi
jasad dolomitik terikat strata. Penyelidikan lapangan, petrografi dan geokimia
membantu merungkai pembentukan beberapa jasad dolomitik. Dolomit petrografi
terdiri daripada: (1) dolomit subhedron perata kristal butiran sederhana
(Dol-I); (2) rombus dolomit bukan perata anhedron kristal butiran halus
(Dol-II); (3) dolomit bukan perata subhedron-anhedron kristal butiran sederhana
hingga kasar (Dol-III) dan simen dolomit pelana kristal kasar hingga kasar
(SD). Pelana dolomit (SD) menunda penggantian dolomit dan mendahului
telogenetik kalsit (TC) simen. Analisis isotop O dan C yang stabil menunjukkan
bahawa dolomit ini mempunyai δ18Ovpdb antara -4.09% hingga -10.4 sedangkan
δ13Cvpdb berkisar antara +0.8 hingga +2.51. Data unsur utama dan unsur
surih menunjukkan bahawa kepekatan Sr dari 145.5 hingga 173 ppm; kandungan Fe
dari 2198 hingga 8215 ppm; dan kandungan Mn 93.5 hingga 411 ppm. Nilai dolomit
pengganti petrografi, dolomit pelana dan nilai δ18Ovpdb menggambarkan
neomorfisme penggantian dolomit yang terbentuk sebelumnya terdedah kepada
cecair pendolomitan lewat. Akibat peningkatan lembangan semasa orogeni Himalaya
pada usia Eosen, peristiwa pendolomitan dihentikan akibat terjadinya air
meteor. Sungkup Sempadan Utama (MBT) dan megarnya kemungkinan besar merupakan
saluran penting yang menyalurkan cecair pendolomitan daripada batuan
silisiklastik yang terkubur jauh ke dalam batu karbonat Jura, menyebabkan
pendolomitan yang lebih ekstrem.
Kata kunci: Hidroterma; isotop; pendolomitan; pelana dolomit
REFERENCES
Adabi, M.H. 2009.
Multistage dolomitization of upper jurassic mozduran formation, Kopet-Dagh
Basin, n.e. Iran. Carbonates and
Evaporites 24(1): 16-32.
Adams, A.E. & MacKenzie, W.S.
2001. A Colour Atlas of Carbonate
Sediments and Rocks Under the Microscope. London: Manson Publishing. p.
180.
Alam, I. 2008. Structure
framework of the Marwat and Khisor range of Pakistan. PhD
Thesis (Pub). NCE in Geology University of Peshawar, Pakistan. p. 132
(Unpublished).
Amthor, J.E. &
Friedman, G.M. 1991. Dolomite-rock textures and secondary porosity development
in Ellenburger Group carbonates (Lower Ordovician), west Texas and southeastern
New Mexico. Sedimentology 38(2):
343-362.
Boggs
Jr., S. & Boggs, S. 2009. Petrology
of Sedimentary Rocks. Cambridge: Cambridge University Press.
Bontognali, T.R.R. 2008.
Microbial dolomite formation within exopolymeric substances, PhD dissertation, ETH ZURICH. p. 141 (Unpublished).
Braithwaite,
C.J., Rizzi, G. & Darke, G. 2004. The geometry and petrogenesis of dolomite
hydrocarbon reservoirs: Introduction. Geological
Society, London, Special Publications 235(1): 1-6.
Chatterjee, S. & Bajpai, S.
2016. India’s northward drift from Gondwana to Asia during the late Cretaceous-Eocene. Proceedings of
Indian National Science Academy 82: 479-
487.
Chatterjee, S., Goswami, A. &
Christopher, R. 2013. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian Plate during its northward
flight from Gondwana to Asia. Gondwana Research 23: 238-267.
Chatterjee, S. & Scotese, C.R.
2010. The wandering Indian plate and its changing biogeography during the Late Cretaceous–Early Tertiary period. In New Aspects of Mesozoic Biogeography, edited
by Bandopadhyay, S. Berlin-Heidelberg, Germany: Springer-Verlag. pp. 105-126.
Chen, D., Qing, H. &
Yang, C. 2004. Multistage hydrothermal dolomites in the Middle Devonian
(Givetian) carbonates from the Guilin area, South China. Sedimentology 51(5): 1029-1051.
Chuan, G., Zhao, C.,
Shaofeng, D., Yixiong, Q. & Cunge, l. 2017. Early dolomitisation
of the Lower-Middle Ordovician cyclic carbonates in
northern Tarim Basin, NW China. Science China
Earth Sciences 60(7): 1283-1298.
Davies, G.R. & Smith
Jr., L.B. 2006. Structurally controlled hydrothermal dolomite reservoir facies:
An overview. AAPG Bulletin 90:
1641-1690.
Dickson, J.A.D. 1966.
Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research 36(2):
491-505.
Fairbridge,
R.W. 1957. The dolomite question: Regional aspects of carbonate
deposition. Soc. Econ. Paleont.
Mineral. 5: 124-178.
Fu, Q., Qing, H. &
Bergman, K.M. 2006. Dolomitization of the Middle Devonian Winnipegosis
carbonates in south-central Saskatchewan, Canada. Sedimentology 53(4): 825-848.
Fürsich, F.T., Callomon, J.H.,
Pandey, D.K. & Jaitly, A.K. 2004. Environments and faunal patterns in the
Kachchh rift basin, western India, during the Jurassic. Rivista Italiana di Paleontologia e Stratigrafia 110: 181-190.
Gasparrini, M.,
Bechstädt, T. & Boni, M. 2006. Massive hydrothermal dolomites in the
southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan
evolution. Marine and Petroleum Geology 23(5): 543-568.
Ghauri, A.A.K., Rehman,
O. & Rehman, S. 1983. A new structural model of the southern slopes of
kotal pass kohat division, NWFP, Pakistan. Geological
Bulletin. University of Peshawar 16: 97-104.
Given, R.K. &
Lohmann, K.C. 1985. Derivation of the original isotopic composition of Permian
marine cements. Journal of Sedimentary
Research 55(3): 430-439.
Gomez-Rivas, E., Warber,
K., Kulzer, F., Bons, P.D., Koehn, D. & Martín-Martín, J.D. 2012.
Structural evolution of the Benicàssim area (Maestrat basin, NE Spain):
insights from fracture and vein analysis. Geogaceta 51(7): 79-82.
Gregg, J.M. &
Shelton, K.L. 1990. Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davis formations
(Cambrian), southeastern Missouri. Journal
of Sedimentary Research 60(4): 549-562.
Henderson, A.L., Najman, Y., Parrish, R., Mark, D.F. &
Foster, G.L. 2011. Constraints to the timing of India-Eurasia collision; A
re-evaluation of evidence from the Indus Basin sedimentary rocks of the
Indus-Tsangpo Suture Zone, Ladakh, India. Earth-Science Reviews 106(3-4): 265-292.
Hauck, M.L., Nelson,
K.D., Brown, L.D., Zhao, W. & Ross, A.R. 1998. Crustal structure of the
Himalayan orogen at 90 east longitude from Project INDEPTH deep reflection
profiles. Tectonics 17(4): 481-500.
Hsü, K.J. 1967.
Chemistry of dolomite formation. In Carbonate
Rocks, edited by Chilingar, G.V. Bissel, H.J. & Fairbridge, R.W.
Elsevier, Amsterdam. pp. 169-191.
Huang, S.J., Shi, H., Mao, X.D.,
Zhang, M., Shen, L.C. & Wu, W.H. 2003. Diagenetic alteration of Earlier
Palaeozoic marine carbonate and preservation for the formation of sea water. Journal-Chengdu
University of Technology 30: 9-18 (in Chinese with English abstract).
Kakemem,
U., Jafarian, A., Husinec, A., Adabi, M.H. & Mahmoudi, A. 2021. Facies,
sequence framework, and reservoir quality along a Triassic carbonate ramp:
Kangan Formation, South Pars Field, Persian Gulf Superbasin. Journal of Petroleum Science and Engineering 198:
108166.
Koeshidayatullah,
A., Corlett, H., Stacey, J., Swart, P.K., Boyce, A. & Hollis, C. 2020.
Origin and evolution of fault-controlled hydrothermal dolomitization fronts: A
new insight. Earth and Planetary
Science Letters 541: 116291.
Khan, M.A., Ahmed, R.,
Raza, H.A. & Kemal, A. 1986. Geology of petroleum in Kohat-Potwar
Depression, Pakistan. AAPG Bulletin 70(4): 396-414.
Land,
L.S. 1998. Failure to precipitate dolomite at 25 °C from dilute solution
despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry 4(3): 361-368.
Lavé, J. & Avouac, J.P.
2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas
of central Nepal. Journal of Geophysical
Research: Solid Earth 105(B3): 5735-5770.
Leech, M.L., Singh, S., Jain, A.K., Klemperer, S.L. &
Manickavasagam, R.M. 2005. The onset of India-Asia continental collision:
Early, steep subduction required by the timing of UHP metamorphism in the
western Himalaya. Earth and
Planetary Science Letters 234(1-2): 83-97.
Lucia, F.J. & Major,
R.P. 1994. Porosity evolution through hypersaline reflux dolomitization. Dolomites: A Volume in Honour of Dolomieu,
edited by Purser, B., Tucker, M. & Zenger, D. Wiley Online Library. pp.
325-341. https://doi.org/10.1002/9781444304077.ch18.
Machel, H.G. & Anderson, J.H.
1989. Pervasive subsurface dolomitization of the Nisku Formation in central
Alberta. Journal of Sedimentary Research 59(6):
891-911. https://doi.org/10.1306/212F90AC-2B24-11D7-8648000102C1865D.
Machel,
H.G. & Lonnee, J. 2002. Hydrothermal dolomite - A product of poor
definition and imagination. Sedimentary
Geology 152(3-4): 163-171.
Martín-Martín, J.D.,
Gomez-Rivas, E., Bover-Arnal, T., Travé, A., Salas, R., MorenoBedmar, J.A.,
Tomás, S., Corbella, M., Teixell, A., Vergés, J. & Stafford, S.L. 2013. The upper Aptian-lower Albian syn-rift
carbonate succession of the southern Maestrat Basin (Spain): Facies architecture and fault-controlled
strata-bound dolostones. Cretaceous Research 41: 217-236.
Mazzullo, S.J. 1992.
Geochemical and neomorphic alteration of dolomite: A review. Carbonates and Evaporites 7(1): 21-37.
McDougall,
J.W., Hussain, A. & Yeats, R.S. 1993. The main boundary thrust and
propagation of deformation into the foreland fold-and-thrust belt in northern
Pakistan near the Indus River. Geological
Society, London, Special Publications 74(1): 581-588.
McKenzie, D.P. &
Selater, J.G. 1973. The evolution of the Indian Ocean. Scientific American 228(5): 62-74.
Montaron, B. 2008.
Confronting carbonates. Oil Review Middle
East 5(1): 132-135.
Ngia, N.R., Hu, M. &
Gao, D. 2019. Tectonic and geothermal controls on dolomitization and
dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions
in the western and central Tarim Basin, NW China. Journal of Asian Earth Sciences 172: 359-382.
O'Brien,
P.J., Zotov, N., Law, R., Khan, M.A. & Jan, M.Q. 2001. Coesite in Himalayan
eclogite and implications for models of India-Asia collision. Geology 29(5): 435-438.
Purser,
B.H., Tucker, M.E. & Zenger, D.H. 1994. Problems, progress and future research
concerning dolomites and dolomitization. Dolomites: A Volume in Honour of Dolomieu 21: 3-20.
Rehman, H.U., Seno, T., Yamamoto, H.
& Khan, T. 2011. Timing of collision of the Kohistan–Ladakh Arc with India and Asia: Debate.
Island Arc 20(3): 308-328. https://doi.org/10.1111/j.1440-1738.2011.00774.x.
Ronchi, P., Masetti, D.,
Tassan, S. & Camocino, D. 2012. Hydrothermal dolomitization in platform and
basin carbonate successions during thrusting: A hydrocarbon reservoir analogue
(Mesozoic of Venetian Southern Alps, Italy). Marine and Petroleum Geology 29(1): 68-89.
Rosenbaum, J. &
Sheppard, S.M.F. 1986. An isotopic study of siderites, dolomites and ankerites
at high temperatures. Geochimica et
Cosmochimica Acta 50(6): 1147-1150.
Saboor,
A., Haneef, M., Hanif, M. & Swati, M.A.F. 2020. Sedimentological attributes
of the Middle Jurassic peloids-dominated carbonates of eastern Tethys, lesser
Himalayas, Pakistan. Carbonates and
Evaporites 35(4): 1-17.
Shah, M.M., Ahmed, W.,
Ahsan, N. & Lisa, M. 2016. Fault-controlled, bedding-parallel dolomite in
the middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur area
(North Pakistan): Petrography, geochemistry, and petrophysical characteristics. Arabian Journal of Geosciences 9(5):
405.
Sibley, D.F. & Gregg,
J.M. 1987. Classification of dolomite rock textures. Journal of Sedimentary Research 57(6): 967-975.
Swennen, R., Dewit, J., Fierens, E., Muchez, P., Shah, M.,
Nader, F. & Hunt, D. 2012. Multiple dolomitization events along the
Pozalagua Fault (Pozalagua Quarry, Basque–Cantabrian Basin, Northern
Spain). Sedimentology 59(4):
1345-1374.
Tahirkheli, R.A.K. 1982.
Geology of the Himalaya, Karakoram and Hindukush in Pakistan. Special Issue, Geological Bulletin of the
University of Peshawar 15. p. 51.
Tahirkheli, R.A.K. 1979.
Geology of Kohistan and adjoining Eurasian and Indo-Pakistan continents,
Pakistan. In Geology of Kohistan,
edited by Tahirkheli, R.A.K. & Jan, M.Q. Special Issue, Geological Bulletin of the University of
Peshawar 11. pp. 1-30.
Tucker, M.E. &
Wright, V.P. 1990. Carbonate
Sedimentology. Oxford: Blackwell Publishing Ltd.
Ullah
Khan, E., Saleem, M., Naseem, A.A., Ahmad, W., Yaseen, M. & Khan, T.U.
2020. Microfacies analysis, diagenetic overprints, geochemistry, and reservoir
quality of the Jurassic Samanasuk Formation at the Kahi Section, Nizampur
Basin, NW Himalayas, Pakistan. Carbonates
and Evaporites 35(3): 1-17.
Veizer, J. 1983. Trace
elements and isotopes in sedimentary carbonates. Reviews in Mineralogy 11: 265-300.
Wadood,
B., Khan, S., Liu, Y., Li, H. & Rahman, A. 2021. Investigating the impact
of diagenesis on reservoir quality of the Jurassic shallow shelfal carbonate
deposits: Kala Chitta Range, North Pakistan. Geological Journal 56(2): 1167-1186.
White,
D.E. 1957. Thermal waters of volcanic origin. Geological Society of America Bulletin 68(12): 637-1658.
Yaseen,
M., Wahid, S., Ahmad, S., Rehman, G., Ahmad, J., Anjum, M.N. & Mehmood, M.
2021. Tectonic evolution, prospectivity and structural studies of the hanging
wall of Main Boundary Thrust along Akhurwal-Kohat transect, Khyber Pakhtunkhwa:
Implications for future exploration. Arabian
Journal of Geosciences 14(4): 1-17.
*Corresponding author; email: abbasaliqau@gmail.com
|