Sains Malaysiana 50(2)(2021): 373-381

http://dx.doi.org/10.17576/jsm-2021-5002-09

 

Degradation of Nonylphenol Ethoxylate-10 (NPE-10) by Mediated Electrochemical Oxidation (MEO) Technology

(Degradasi Nonilfenol Etoksilat-10 (NPE-10) oleh Teknologi Gerak Balas Pengoksidaan Elektrokimia (MEO))

 

HENRY SETIYANTO1,2*, MUHAMMAD. MUSLIM SYAIFULLAH1, I MADE ADYATMIKA1, DIAN AYU SETYORINI1, MUHAMMAD YUDHISTIRA AZIS1, VIENNA SARASWATY3 & MUHAMMAD ALI ZULFIKAR1

 

1Analytical Chemistry Research Group, Institut Teknologi Bandung, Bandung, Indonesia

 

2Center for Defense and Security Research, Institut Teknologi Bandung, Bandung 40132, Indonesia

 

3Research Unit for Clean Technology, Indonesia Institute of Sciences, Bandung, Indonesia

 

Received: 2 January 2020/Accepted: 12 July 2020

 

ABSTRACT

Nonylphenol ethoxylate (NPE-10) is a non-ionic surfactant that is synthesized from alkylphenol ethoxylate. The accumulation of NPE-10 in wastewater will endanger the ecosystem as well as the human being. Nowadays, NPE-10 can be degraded indirectly by using an electrochemical treatment by the advancement of technology. Thus, this study is aimed to evaluate the electro-degradation potential of NPE-10 by MEO using Ce(IV) ionic mediator. In addition, the influence of Ag(I) ionic catalyst in the performance of MEO for the degradation of NPE-10 was also observed. The potency of MEO technology in the NPE-10 degradation was evaluated by voltammetry technique and confirmed by titrimetry and LC-MS analysis. The results showed that in the absence of Ag(I) ionic catalyst, the degradation of NPE-10 by MEO was 85.93%. Furthermore, when the Ag(I) ionic catalyst was applied, the performance of MEO in degradation of NPE-10 was improved to 95.12%. The back titration using Ba(OH)2 confirmed the formation of CO2 by 46.79%, whereas the redox titration shows the total of degradation organic compounds by 42.50%. It was emphasized by the formation of two new peaks in the LC-MS chromatogram. In summary, our results confirmed the potential of MEO technology for the NPE-10 degradation.

 

Keywords: Ag(I) catalyst ion; Ce(IV) mediator ion; degradation; mediated electrochemical oxidation; NPE-10

 

ABSTRAK

Nonilfenol etoksilat (NPE-10) merupakan bahan surfaktan tidak berion yang disintesiskan daripada alkil fenoletoksilat. Pengumpulan NPE-10 dalam air buangan akan membahayakan ekosistem dan juga manusia. Hari ini, NPE-10 dapat digradasikan secara tidak langsung dengan penggunaan rawatan elektrokimia oleh teknologi yang maju. Oleh itu, kajian ini adalah untuk mengkaji potensi degradasi elektro terhadap bahan NPE-10 oleh teknologi MEO dan menggunakan ion Ce(IV) sebagai bahan perantara. Selain itu, pengaruh pemangkin ion Ag(I) dalam prestasinya kepada teknologi MEO untuk degradasi NPE-10 diperhati. Potensi teknologi MEO dalam degradasi NPE-10 telah dinilai daripada teknik voltametri dan disahkan dengan kaedah titrimetri dan analisis LC-MS. Keputusan kajian menunjukkan bahawa dengan ketiadaan pemangkin ion Ag(I), prestasi degradasi NPE-10 melalui teknologi MEO adalah 85.93%. Selain itu, apabila pemangkin ion Ag (I) digunakan, potensi MEO untuk degradasi NPE-10 ditingkatkan kepada 95.12%. Pentitratan balik menggunakan Ba(OH)2 mengesahkan bahawa terdapat penghasilan CO2 sebanyak 46.79%, sedangkan titrasi redoks menunjukkan jumlah sebatian organik yang digradasi sebanyak 42.50%. Jumlah degradasi ini ditekankan dengan penghasilan dua puncak daripada analisis kromatogram LC-MS. Secara kesimpulannya, keputusan kajian kami sah bahawa potensi teknologi MEO dalam degradasi NPE-10.

 

Kata kunci: Degradasi; ion perantara Ce(IV); gerak balas pengoksidaan elektrokimia; NPE-10; pemangkin ion Ag(I)

 

REFERENCES

Balaji, S., Sang, J.C., Manickam, M., Kokovkin, V.V. & Moon, I.S. 2008. Destruction of organic pollutants by cerium(IV) MEO process: A study on the influence of process conditions for EDTA mineralization. Journal of Hazardous Materials 150: 596-603.

 Brillas, E. 2014. A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton. Journal of Brazillian Chemical Society 25: 393-417.

Brigden, K., Santillo, D. & Johnston, P. 2012. Nonylphenol Ethoxylates (Npes) in Textile Products, and Their Release Through Laundering. Greenpeace Research Laboratories Technical Report. University of Exeter.

Brooke, L. & Thursby, G. 2005. Ambient Aquatic Life Water Quality Criteria for Nonylphenol. Report for the United States EPA, Office of Water, Office of Science and Technology, Washington, DC, USA.

Chung, Y.H. & Park, S.M. 2000. Destruction of anilin by mediated electrochemical oxidation with Ce(IV) and Co(III) as mediators. Journal of Applied Electrochemistry 30: 685-691.

Cox, M.F. & Matson, T.P. 1984. Optimization of nonionic surfactants for hard-surfaces cleaning. Journal of the American Oil Chemist Society 61: 1273-1278.

David, A., Fenet, H. & Gomez, E. 2009. Alkylphenols in marine environments: Distribution monitoring strategies and detection considerations. Marine Pollution Bulletin 58: 953-960.

Fawzy, A. & Al-Jahdali B.A. 2016. Silver(I) catalysis for oxidation of L-glutamine by cerium(IV) in perchlorate solutions: Kinetics and mechanistic approach. Journal of Austin Chemical Engineering 3(4): 1037.

Forte, M., Lorenzo, M.D., Zarrizzo, A., Valiante, S., Vecchione, C., Laforgia, V. & Falco, M.D. 2016. Nonylphenol effects on human prostate non tumorigenic cells. Toxicology 357: 21-32.

Fuente, L.D.L., Acosta, T., Babay, P., Curutchet, G., Candal, R. & Litter, M.I. 2010. Degradation of nonylphenol ethoxylate-9 (NPE-9) by photochemical advanced oxidation technologies. Industrial and Engineering Chemistry Research 49(15): 6909-6915.

Hernandez-Raquet, G., Soef, A., Delgenès, N. & Balaguer, P. 2007. Removal of the endocrine disrupter nonylphenol and its estrogenic activity in sludge treatment processes. Water Research 41: 2643-2651.

Hussain, G. & Silvester, D.S. 2018. Comparison for voltammetric techniques for amina sensing in ionic liquids. Electroanalysis 30: 75-83.

Juttner, K., Galla, U. & Schmieder, H. 2000. Electrochemical approaches to environmental problems in the process industry. Electrochimica Acta 45: 2575-2594.

Karci, A. 2014. Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation process: The state of the art on transformation product and toxicity. Journal of Chemosphere 99: 1-18.

Li, C., Jin, F. & Snyder, S.A. 2018. Recent advancements and future trends in analysis of nonylphenol ethoxylates and their degradation product nonylphenol in food and environment. Trends in Analytical Chemistry 107: 78-90.

Liu, C., Lai, Y., Ouyang, J., Yang, T., Guo, Y., Yang, J. & Huang, S. 2017. Influence of nonylphenol and octylphenol exposure on 5-HT, 5-HT transporter, and 5-HT2A receptor. Environmental Science and Pollution Research 24(9): 8279-8286.

Lu, J., Jin, Q., He, Y. & Wu, J. 2007. Biodegradation of nonylphenol polyethoxylates under Fe(III)-reducing conditions. Chemosphere 69: 1047-1054.

Maki, H., Masuda, N., Fujiwara, Y., Ike, M. & Fujita, M. 1994. Degradation of alkylphenol ethoxylates by Pseudomonas sp. Strain TR01. Applied and Environmental Microbiology 60: 2265-2271.

Mao, Z., Zheng, X.F., Zhang, Y.Q., Tao, X.X., Li, Y. & Wang, W. 2012. Occurrence and biodegradation of nonylphenol in the environment. International Journal of Molecular Sciences 13(1): 491-505.

Martinez-Huitle, C.A. & Ferro, S. 2006. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chemical Society Reviews 35: 1324-1340.

Martins, A.F., Wilde, M.L., Vasconcelos, T.G. & Henriques, D.M. 2006. Nonylphenol polyethoxylate degradation by means of electrocoagulation and electrochemical Fenton. Separation and Purification Technology 50: 249-255.

Matheswaran, M., Subramanian, B., Saan, J.C. & Il, S.M. 2007. Silver ion catalyzed cerium(IV) mediated electrochemical oxidation of phenol in nitric acid medium. Journal of Electrochimica Acta 53: 1897-1901.

Muslim, M.S., Setiyanto, H. & Zulfikar, M.A. 2018. Electrodegradation of nonylphenol ethoxylate (NPE-10) with silver ion catalyzed cerium (IV) in sulfuric acid medium. Proceedings of the 8th Annual Basic Science International Conference 2018. p. 90.

Namara, P.J.M., Wilson, C.A., Wogen, M.T., Murthy, S.N., Novak, J.T. & Novak, P.J. 2012. The effect of thermal hydrolysis pretreatment on the anaerobic degradation of nonylphenol and short-chain nonylphenol ethoxylates in digested biosolids. Water Research 46: 2937-2946.

Olkowska, E., Ruman, M. & Polkowska, Z. 2014. Occurrence in surface active agents in the environment. Journal of Analytical Methods in Chemistry 708: 1-15.

Paulenova, A., Creager, S.E., Navratil, J.D. & Wei, Y. 2002. Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid. Journal of Power Sources 109: 431-438.

Raju, T. & Basha, C.A. 2005. Electrochemical cell design and development for mediated electrochemical oxidation - Ce(III)/Ce(IV) system. Chemical Engineering Journal 114: 55-65.

Ren, X. & Wei, Q. 2011. A simple modeling study of the Ce(IV) regeneration in sulfuric acids solutions. Journal of Hazardous Materials 192: 779-785.

Setiyanto, H., Agustina, D., Zulfikar, M.A. & Saraswaty, V. 2016. Study on the Fenton reaction for degradation of remazol red B in textile waste industry. Molekul 11(2): 168- 179.  

Setiyanto, H., Saraswaty, V., Hertadi, R., Noviandri, I. & Buchari, B. 2015. Determination of the reactivity of the anti - cancer nitrogen mustard - mechlorethamine: A cyclic voltammetric investigation. Analytical and Bioanalytical Electrochemistry 6: 657-665.

Setiyanto, H., Saraswaty, V., Hertadi, R., Noviandri, I. & Buchari, B. 2011a. Chemical reactivity of chlorambucil in organic solvents: Influence of 4-chloro butyronitrile nucleophile to voltammogram profile. International Journal of Electrochemical Science 6: 2090-2100.

Setiyanto, H., Saraswaty, V., Hertadi, R., Noviandri, I. & Buchari, B. 2011b. Cyclic voltammetric study of chlorambucil in the presence of 4-chloro butyronitrile in aqueous solution. International Journal of Chemical Technology Research 3(4): 1986-1992.

Shufaro, Y., Saada, A., Simeonov, M., Tsuberi, B.Z., Alban, C., Levin, A.K., Shochat, T., Fisch, B. & Abir, R. 2018. The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reproductive Toxicology 81: 246-252.

Sumathi, T., Sundaram, P.S. & Chandramohan, G. 2010. A kinetic and mechanistic study on the silver (I) catalyzed oxidation of L-alanine by cerium (IV) in sulfuric acid medium. Arabian Journal of Chemistry 4: 427-435.

Suslova, O., Govorukha, V., Brovarskaya, O., Matveeva, N., Tashyreva, H. & Tashyerev, O. 2014. Method for determining organic compound concentration in biological systems by permanganate redox titration. International Journal Bioautomotion 18(1): 45-52.

Wang, J. 2000. Analytical Electrochemistry. 2nd ed. New York: John Wiley & Sons.

 

*Corresponding author; email: henry@chem.itb.ac.id

   

 

 

 

previous