Sains Malaysiana 50(2)(2021): 373-381
http://dx.doi.org/10.17576/jsm-2021-5002-09
Degradation of Nonylphenol
Ethoxylate-10 (NPE-10) by Mediated Electrochemical Oxidation (MEO) Technology
(Degradasi Nonilfenol Etoksilat-10
(NPE-10) oleh Teknologi Gerak Balas Pengoksidaan Elektrokimia (MEO))
HENRY
SETIYANTO1,2*, MUHAMMAD. MUSLIM SYAIFULLAH1, I MADE
ADYATMIKA1, DIAN AYU SETYORINI1, MUHAMMAD YUDHISTIRA AZIS1,
VIENNA SARASWATY3 & MUHAMMAD ALI ZULFIKAR1
1Analytical
Chemistry Research Group, Institut Teknologi Bandung, Bandung, Indonesia
2Center
for Defense and Security Research, Institut Teknologi Bandung, Bandung 40132, Indonesia
3Research
Unit for Clean Technology, Indonesia Institute of Sciences, Bandung, Indonesia
Received:
2 January 2020/Accepted: 12 July 2020
ABSTRACT
Nonylphenol
ethoxylate (NPE-10) is a non-ionic surfactant that is synthesized from
alkylphenol ethoxylate. The accumulation of NPE-10 in wastewater will endanger
the ecosystem as well as the human being. Nowadays, NPE-10 can be degraded
indirectly by using an electrochemical treatment by the advancement of
technology. Thus, this study is aimed to evaluate the electro-degradation
potential of NPE-10 by MEO using Ce(IV) ionic mediator. In addition, the
influence of Ag(I) ionic catalyst in the performance of MEO for the degradation
of NPE-10 was also observed. The potency of MEO technology in the NPE-10
degradation was evaluated by voltammetry technique and confirmed by titrimetry and LC-MS analysis. The results
showed that in the absence of Ag(I) ionic catalyst, the degradation of NPE-10
by MEO was 85.93%. Furthermore, when the Ag(I) ionic catalyst was applied, the
performance of MEO in degradation of NPE-10 was improved to 95.12%. The back
titration using Ba(OH)2 confirmed the formation of CO2 by
46.79%, whereas the redox titration shows the total of degradation organic
compounds by 42.50%. It was emphasized by the formation of two new peaks in the
LC-MS chromatogram. In summary, our results confirmed the potential of MEO
technology for the NPE-10 degradation.
Keywords: Ag(I) catalyst ion; Ce(IV)
mediator ion; degradation; mediated electrochemical oxidation; NPE-10
ABSTRAK
Nonilfenol etoksilat (NPE-10) merupakan bahan surfaktan tidak berion yang disintesiskan daripada alkil fenoletoksilat. Pengumpulan NPE-10 dalam air buangan akan membahayakan ekosistem dan juga manusia.
Hari ini, NPE-10 dapat digradasikan secara tidak langsung dengan penggunaan rawatan elektrokimia oleh teknologi yang maju. Oleh itu, kajian ini adalah untuk mengkaji potensi degradasi elektro terhadap bahan NPE-10 oleh teknologi MEO dan menggunakan ion
Ce(IV) sebagai bahan perantara. Selain itu, pengaruh pemangkin ion Ag(I) dalam prestasinya kepada teknologi MEO untuk degradasi NPE-10 diperhati. Potensi teknologi MEO dalam degradasi NPE-10 telah dinilai daripada teknik voltametri dan disahkan dengan kaedah titrimetri dan analisis LC-MS. Keputusan kajian menunjukkan bahawa dengan ketiadaan pemangkin ion Ag(I), prestasi degradasi NPE-10 melalui teknologi MEO adalah 85.93%. Selain itu, apabila pemangkin ion Ag (I) digunakan, potensi MEO untuk degradasi NPE-10 ditingkatkan kepada 95.12%. Pentitratan balik menggunakan Ba(OH)2 mengesahkan bahawa terdapat penghasilan CO2 sebanyak 46.79%, sedangkan titrasi redoks menunjukkan jumlah sebatian organik yang digradasi sebanyak 42.50%. Jumlah degradasi ini ditekankan dengan penghasilan dua puncak daripada analisis kromatogram LC-MS. Secara kesimpulannya, keputusan kajian kami sah bahawa potensi teknologi MEO dalam degradasi NPE-10.
Kata kunci: Degradasi; ion perantara Ce(IV); gerak balas pengoksidaan elektrokimia; NPE-10; pemangkin ion Ag(I)
REFERENCES
Balaji,
S., Sang, J.C., Manickam, M., Kokovkin, V.V. &
Moon, I.S. 2008. Destruction of organic pollutants by cerium(IV) MEO process: A
study on the influence of process conditions for EDTA mineralization. Journal of Hazardous Materials 150:
596-603.
Brillas, E. 2014. A
review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton. Journal of Brazillian Chemical Society 25: 393-417.
Brigden, K., Santillo, D. & Johnston, P. 2012. Nonylphenol Ethoxylates (Npes) in Textile
Products, and Their Release Through Laundering. Greenpeace Research
Laboratories Technical Report. University of Exeter.
Brooke,
L. & Thursby, G. 2005. Ambient Aquatic Life Water Quality Criteria for Nonylphenol. Report for the United States EPA, Office of
Water, Office of Science and Technology, Washington, DC, USA.
Chung,
Y.H. & Park, S.M. 2000. Destruction of anilin by
mediated electrochemical oxidation with Ce(IV) and Co(III) as mediators. Journal of Applied Electrochemistry 30:
685-691.
Cox,
M.F. & Matson, T.P. 1984. Optimization of nonionic surfactants for
hard-surfaces cleaning. Journal of the
American Oil Chemist Society 61: 1273-1278.
David,
A., Fenet, H. & Gomez, E. 2009. Alkylphenols in
marine environments: Distribution monitoring strategies and detection
considerations. Marine Pollution Bulletin 58: 953-960.
Fawzy, A.
& Al-Jahdali B.A. 2016. Silver(I)
catalysis for oxidation of L-glutamine by cerium(IV) in perchlorate solutions:
Kinetics and mechanistic approach. Journal
of Austin Chemical Engineering 3(4): 1037.
Forte,
M., Lorenzo, M.D., Zarrizzo, A., Valiante,
S., Vecchione, C., Laforgia,
V. & Falco, M.D. 2016. Nonylphenol effects on human prostate non
tumorigenic cells. Toxicology 357: 21-32.
Fuente, L.D.L., Acosta, T., Babay, P., Curutchet, G., Candal, R. & Litter, M.I. 2010. Degradation
of nonylphenol ethoxylate-9 (NPE-9) by photochemical advanced oxidation
technologies. Industrial
and Engineering Chemistry Research 49(15): 6909-6915.
Hernandez-Raquet, G., Soef, A., Delgenès, N. & Balaguer, P. 2007. Removal of the
endocrine disrupter nonylphenol and its estrogenic activity in sludge treatment
processes. Water Research 41: 2643-2651.
Hussain,
G. & Silvester, D.S. 2018. Comparison for voltammetric techniques for amina sensing in ionic liquids. Electroanalysis 30: 75-83.
Juttner, K., Galla, U. & Schmieder, H.
2000. Electrochemical approaches to environmental problems in the process
industry. Electrochimica Acta 45: 2575-2594.
Karci, A.
2014. Degradation of chlorophenols and alkylphenol ethoxylates, two
representative textile chemicals, in water by advanced oxidation process: The
state of the art on transformation product and toxicity. Journal of Chemosphere 99: 1-18.
Li,
C., Jin, F. & Snyder, S.A. 2018. Recent
advancements and future trends in analysis of nonylphenol ethoxylates and their
degradation product nonylphenol in food and environment. Trends in
Analytical Chemistry 107: 78-90.
Liu,
C., Lai, Y., Ouyang, J., Yang, T., Guo, Y., Yang, J. & Huang, S. 2017.
Influence of nonylphenol and octylphenol exposure on
5-HT, 5-HT transporter, and 5-HT2A receptor. Environmental
Science and Pollution Research 24(9): 8279-8286.
Lu, J., Jin, Q., He, Y. & Wu, J. 2007. Biodegradation of
nonylphenol polyethoxylates under Fe(III)-reducing
conditions. Chemosphere 69:
1047-1054.
Maki,
H., Masuda, N., Fujiwara, Y., Ike, M. & Fujita, M. 1994. Degradation of
alkylphenol ethoxylates by Pseudomonas sp. Strain TR01. Applied and
Environmental Microbiology 60: 2265-2271.
Mao,
Z., Zheng, X.F., Zhang, Y.Q., Tao, X.X., Li, Y. & Wang, W. 2012. Occurrence
and biodegradation of nonylphenol in the environment. International Journal
of Molecular Sciences 13(1): 491-505.
Martinez-Huitle, C.A. & Ferro, S. 2006. Electrochemical
oxidation of organic pollutants for the wastewater treatment: Direct and
indirect processes. Chemical Society
Reviews 35: 1324-1340.
Martins,
A.F., Wilde, M.L., Vasconcelos, T.G. & Henriques, D.M. 2006. Nonylphenol polyethoxylate degradation by means of electrocoagulation
and electrochemical Fenton. Separation
and Purification Technology 50: 249-255.
Matheswaran,
M., Subramanian, B., Saan, J.C. & Il, S.M. 2007. Silver ion
catalyzed cerium(IV) mediated electrochemical oxidation of phenol in nitric
acid medium. Journal of Electrochimica Acta 53: 1897-1901.
Muslim,
M.S., Setiyanto, H. & Zulfikar, M.A. 2018. Electrodegradation of nonylphenol ethoxylate (NPE-10) with
silver ion catalyzed cerium (IV) in sulfuric acid medium. Proceedings of the
8th Annual Basic Science International Conference 2018. p. 90.
Namara,
P.J.M., Wilson, C.A., Wogen, M.T., Murthy, S.N.,
Novak, J.T. & Novak, P.J. 2012. The effect of thermal hydrolysis
pretreatment on the anaerobic degradation of nonylphenol and short-chain
nonylphenol ethoxylates in digested biosolids. Water Research 46: 2937-2946.
Olkowska, E., Ruman, M. & Polkowska, Z.
2014. Occurrence in surface active agents in the environment. Journal of Analytical Methods in Chemistry 708: 1-15.
Paulenova, A., Creager,
S.E., Navratil, J.D. & Wei, Y. 2002. Redox
potentials and kinetics of the Ce3+/Ce4+ redox reaction
and solubility of cerium sulfates in sulfuric acid. Journal of Power Sources 109: 431-438.
Raju,
T. & Basha, C.A. 2005. Electrochemical cell design and development for
mediated electrochemical oxidation - Ce(III)/Ce(IV) system. Chemical Engineering Journal 114: 55-65.
Ren,
X. & Wei, Q. 2011. A simple modeling study of the Ce(IV) regeneration in
sulfuric acids solutions. Journal of Hazardous Materials 192: 779-785.
Setiyanto, H., Agustina,
D., Zulfikar, M.A. & Saraswaty, V. 2016. Study on
the Fenton reaction for degradation of remazol red B
in textile waste industry. Molekul 11(2): 168- 179.
Setiyanto, H., Saraswaty, V., Hertadi, R., Noviandri, I. & Buchari, B.
2015. Determination of the reactivity of the anti - cancer nitrogen mustard -
mechlorethamine: A cyclic voltammetric investigation. Analytical and Bioanalytical
Electrochemistry 6: 657-665.
Setiyanto, H., Saraswaty, V., Hertadi, R., Noviandri, I. & Buchari, B.
2011a. Chemical reactivity of chlorambucil in organic solvents: Influence of
4-chloro butyronitrile nucleophile to voltammogram
profile. International Journal of
Electrochemical Science 6: 2090-2100.
Setiyanto, H., Saraswaty, V., Hertadi, R., Noviandri, I. & Buchari, B.
2011b. Cyclic voltammetric study of chlorambucil in
the presence of 4-chloro butyronitrile in aqueous
solution. International Journal of
Chemical Technology Research 3(4): 1986-1992.
Shufaro, Y., Saada, A., Simeonov, M., Tsuberi, B.Z., Alban, C., Levin, A.K., Shochat,
T., Fisch, B. & Abir, R. 2018. The influence of in vivo exposure to nonylphenol
ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reproductive
Toxicology 81: 246-252.
Sumathi,
T., Sundaram, P.S. & Chandramohan, G. 2010. A kinetic
and mechanistic study on the silver (I) catalyzed oxidation of L-alanine by
cerium (IV) in sulfuric acid medium. Arabian Journal of Chemistry 4: 427-435.
Suslova, O., Govorukha, V., Brovarskaya, O., Matveeva, N., Tashyreva, H. & Tashyerev, O. 2014. Method for determining organic
compound concentration in biological systems by permanganate redox titration. International
Journal Bioautomotion 18(1): 45-52.
Wang,
J. 2000. Analytical Electrochemistry. 2nd ed. New York: John Wiley &
Sons.
*Corresponding
author; email: henry@chem.itb.ac.id
|