Sains Malaysiana 50(2)(2021): 383-393

http://dx.doi.org/10.17576/jsm-2021-5002-10

 

Antimicrobial Activity and LC-MS Data Comparison from Lichen Parmotrema praesorediosum in Bangi, Selangor, Malaysia

(Aktiviti Antimikrob dan Perbandingan Data LC-MS daripada Lichen Parmotrema praesorediosum di Bangi, Selangor, Malaysia)

 

ANIS ASMI AZMAN1, NURUL NADIAH1, ANDI RIFKI ROSANDY1, AFNANI ALWI2, NURKHALIDA KAMAL3, ROZIDA MOHD KHALID1 & MUNTAZ ABU BAKAR1*

 

1School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Biological Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor Darul Ehsan

Malaysia

 

3Faculty of Pharmaceutical, Cyberjaya University College of Medical Science, 63000 Cyberjaya, Selangor Darul Ehsan, Malaysia

 

Received: 20 May 2020/Accepted: 12 July 2020

 

ABSTRACT

The research study regarding antimicrobial activity of pure compounds and LCMS data comparison from extract of lichen Parmotrema praesorediosum in Bangi, Selangor, Malaysia. Antimicrobial activity of acetone, ethanol, and methanol extracts as well as five compounds, namely methyl divaricatinate, methyl haematommate, methyl chlorohaematommate, methyl β-orsellinate, and vinapraesorediosic acid from methanol extract were identified for the microbial activity against four bacterial species, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Enterobacter aerogens, and Escerichia coli as well as two fungal species, Candida albicans and Candida parapsilosis based on standards. The determination of IC50 using minimal inhibitory concentration (MIC) by broth microdilution method was carried out. For acetone extract, 201 μg/mL concentration was required to inhibit 50% (IC50) growth of positive gram bacteria, S. aureus while the concentrations of 430 and 480 μg/mL were able to inhibit 50% (IC50) growth of C. albicans and C. parapsilosis, respectively. Ethanol and methanol extract as well as five pure compounds did not inhibit 50% (IC50) of bacterial and yeast growths. Five pure compounds were first reported to determine IC50 of minimal inhibitory concentration (MIC) from lichen, Parmotrema praesorediosum in Malaysia. The comparison of LC-MS data between ethanol and acetone extracts showed that there was a peak of the main compound, atranorin in the acetone extract, but was invisible in the ethanol extract where the main bond broke down and produced other compounds. Result of pure compounds from antimicrobial activity and LCMS data comparison from extract of lichen Parmotrema praesorediosum were first reported in Bangi, Selangor, Malaysia. Data produced from this study will be used to show the comparison and latest result that will provide ongoing body of research into the issue of natural product.

 

Keywords: Antimicrobial; LC-MS; lichen; MIC

 

ABSTRAK

Penyelidikan ini mengkaji tentang aktiviti antimikrob bagi sebatian tulen dan perbandingan data SJ-CK daripada ekstrak lichen Parmotrema praesorediosum di Bangi, Selangor, Malaysia. Aktiviti antimikrob bagi ekstrak aseton, etanol dan metanol serta lima sebatian, iaitu metil divarikatinat, metil haematomat, metil klorohaematomat, metil β-orselinat dan asid vinapraesorediosik daripada ekstrak metanol dikenal pasti untuk aktiviti mikrob terhadap empat spesies bakteria, Staphylococcus aureus, rintang metisilin Staphylococcus aureus, Enterobacter aerogens dan Escerichia coli serta dua spesies yis, Candida albicans dan Candida parapsilosis berdasarkan piawai. Penentuan IC50 menggunakan kepekatan perencatan minimum (KPM) dengan kaedah mikrodilusi kaldu dilakukan. Bagi ekstrak aseton, kepekatan 201 μg/mL berupaya untuk merencatkan 50% (IC50) pertumbuhan bakteria gram positif, S. aureus manakala kepekatan sebanyak 430 dan 480 μg/mL berupaya merencatkan 50% (IC50) pertumbuhan yisC. albicans dan C. parapsilosis. Ekstrak etanol dan metanol serta lima sebatian tulen tidak berupaya untuk merencatkan 50% pertumbuhan bakteria dan yis. Lima sebatian tulen pertama kali dilaporkan untuk menentukan kepekatan perencatan minimum (KPM) IC50 daripada liken Parmotrema praesorediosum di Malaysia. Perbandingan data SJ-CK antara ekstrak etanol dan aseton menunjukkan terdapat puncak sebatian utama, atranorin dalam ekstrak aseton, tetapi tidak kelihatan pada ekstrak etanol dengan pecahan ikatan utama telah berlaku dan menghasilkan sebatian lain. Keputusan bagi sebatian tulen daripada aktiviti antimikrob dan perbandingan data SJ-CK daripada ekstrak lichen Parmotrema praesorediosum pertama kali dilaporkan di Bangi, Selangor, Malaysia. Data yang dihasilkan daripada kajian ini akan digunakan untuk menunjukkan perbandingan dan hasil terbaru yang akan memberikan kajian yang berterusan mengenai isu produk semula jadi.

 

Kata kunci: Antimikrob; KPM; liken; SJ-CK

 

REFERENCES

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G. & Lightfoot, D.A. 2017. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6(42): 1-23.

Aziman, N., Abdullah, N., Mohd Noor, Z., Zulkifli, K.S. & Wan Kamarudin, W.S.S. 2012. Phytochemical constituents and in vitro bioactivity of ethanolic aromatic herb extracts. Sains Malaysiana 41(11): 1437-1444.

Balaji, P. & Hariharan, G.N. 2007. In vitro antimicrobial activity of Parmotrema praesorediosum. Research Journal of Botany 2(1): 54-59.

Chauhan, R. & Abraham, J. 2013. In vitro antimicrobial potential of the lichen Parmotrema sp. extracts against various pathogens. Iranian Journal of Basic Medical Sciences 16(7): 881-885.

Coutinho, A., Silva, L., Fedorov, A. & Prieto, M. 2004. Cholesterol and ergosterol influence nystatin surface aggregation: Relation to pore formation. Biophysical Journal 87(5): 3264-3276.

Dai, J. & Mumper, R.J. 2010. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10): 7313-7352.

Din, L.B., Zakaria, Z., Samsudin, M.W. & Elix, J.A. 2010. Chemical profile of compounds from lichens of Bukit Larut, Peninsular Malaysia. Sains Malaysiana 39(6): 901-908.

Eloff, J.N. 2019. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complementary and Alternative Medicine 19(106): 1-8.

Epand, R.M., Walker, C., Epand, R.F. & Magarvey, N.A. 2016. Molecular mechanisms of membrane targeting antibiotics. BBA - Biomembranes 1858(5): 980-987.

Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M. & Bačkor, M. 2018. Lichen metabolites: An overview of some secondary metabolites and their biological potential. In Co-Evolution of Secondary Metabolites, edited by Mérillon, J.M. & Ramawat, K.G. Switzerland: Springer. pp. 175-209.

Huynh, B.L.C. 2014. Study on chemical constituents and biological activities of four lichens growing in the South of Vietnam. Ph.D Thesis, Vietnam National University (Unpublished).

Huynh, B.L.C., Duong, H.L., Takenaka, Y., Tanahashi, T. & Nguyen, K.P.P. 2016. New phenolic compounds from the lichen Parmotrema praesorediosum (Nyl.) hale, (Parmeliaceae). Magnetic Resonance Chemistry 54(1): 81-87.

Jahromi, S.G. 2019. Extraction techniques of phenolic compounds from plants. In Plant Physiological Aspects of Phenolic Compounds, edited by Soto-Hernández, M., García-Mateos, R. & Palma-Tenango, M. London: IntechOpen. pp. 1-18.

Jim, O.N. 2014. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. United Kingdom: Wellcome Trust.

Joshi, D.R. & Adhikari, N. 2019. An overview on common organic solvents and their toxicity. Journal of Pharmaceutical Research International 28(3): 1-18.

Joulain, D. & Tabacchi. R. 2009a. Lichen extracts as raw materials in perfumery. Part 1: Oakmoss. Flavour and Fragrance Journal 24(2): 49-61.

Joulain, D. & Tabacchi. R. 2009b. Lichen extracts as raw materials in perfumery. Part 2: Treemoss. Flavour and Fragrance Journal 24(3): 105-116.

Klančnik, A., Piskernik, S., Jeršek, B. & Možina, S.S. 2010. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods 81(2): 121-126.

Kosanić, M. & Ranković, B. 2015. Lichen secondary metabolites as potential antibiotic agents. In Lichen Secondary Metabolites, edited by Ranković, B. Switzerland: Springer International Publishing. pp. 81-104.

Mahdavi, B., Yaacob, W.A. & Din, L.B. 2017. Antioxidant and antimicrobial activity of the extracts from different parts of Etlingera sayapensis (Zingiberaceae). Sains Malaysiana 46(9): 1565-1571.

Mahira, S., Jain, A., Khan, W. & Domb, A.J. 2019. Antimicrobial materials - An overview. In Antimicrobial Materials for Biomedical Applications, edited by Domb, A.J., Kunduru, K.R. & Farah, S. United Kingdom: Royal Society of Chemistry. pp. 1-37.

Marijana, K., Branislav, R. & Slobodan, S. 2010. Antimicrobial activity of the lichen Lecanora frustulosa and Parmeliopsis hyperopta and their divaricatic acid and zeorin constituents. African Journal of Microbiology 4(9): 885-890.

Minatel, I.O., Borges, C.V., Ferreira, M.I., Gomez, H.A.G., Chen, C.Y.O. & Lima, G.P.P. 2017. Phenolic compounds: Functional properties, impact of processing and bioavailability. In Phenolic Compounds - Biological Activity, edited by Soto-Hernandez, M., Palma-Tenango, M. & Garcia-Mateos, R. London: IntechOpen. pp. 1-24.

Natrah, F.M.I., Harah, Z.M., Sidik, B.J., Izzatul, N.M.S. & Syahidah, A. 2015. Antibacterial activities of selected seaweed and seagrass from Port Dickson coastal water against different aquaculture pathogens. Sains Malaysiana 44(9): 1269-1273.

Niaounakis, M. 2013. Definitions and assessment of (bio)degradation. Biopolymers Reuse, Recycling, and Disposal. United Kingdom: William Andrews Applied Science Publishers. pp. 77-94.

Nordin, N., Mohan, S., Hashim, N.M., Zajmi, A., Yazid, N.S.M., Rahman, M.A., Omer, F.A.A., Omar, H., Alias, F.A.F. & Ali, H.M. 2014. Antioxidant, anticancer and antimicrobial activities of methanolic extracts from Enicosanthellum pulchrum (king) heusden. Sains Malaysiana43(10): 1515-1521.

Rajan, V.P., Gunasekaran, S., Ramanathan, S., Murugaiyah, V., Samsudin, M.W. & Din, L.B. 2016. Biological activities of four Parmotrema species of Malaysian origin and their chemical constituents. Journal of Applied Pharmaceutical Science 6(8): 36-43.

Rajan, V.P., Gunasekaran, S., Ramanathan, S., Murugaiyah, V., Samsudin, W. & Din, L.B. 2015. Antibacterial activity of extracts of Parmotrema praesorediosum, Parmotrema rampoddense, Parmotrema tinctorum, and Parmotrema reticulatum. AIP Conference Proceedings 1678(1): 1-4.

Ranković, B. & Kosanić, M. 2015. Lichens as a potential source of bioactive secondary metabolites. In Lichen Secondary Metabolites, edited by Ranković, B. Switzerland: Springer International Publishing. pp. 1-29.

Ristić, S., Ranković, B., Kosanić, M., Stanojković, T., Stamenković, S., Vasiljević, P., Manojlović, I. & Manojlović, N. 2016. Phytochemical study and antioxidant, antimicrobial and anticancer activities of Melanelia subaurifera and Melanelia fuliginosa lichens. Journal of Food Science and Technology 53(6): 2804-2816.

Stojanović, I.Ž., Radulović, N.S., Mitrović, T.L., Stamenković, S.M. & Stojanović, G.S. 2011. Volatile constituents of selected Parmeliaceae lichens. Journal of the Serbian Chemical Society 76(7): 987-994.

Studzinska-Sroka, E., Galanty, A. & Bylka, W. 2017. Atranorin - an interesting lichen secondary metabolite. Mini-Reviews in Medicinal Chemistry 17(17): 1633-1645.

Thadhani, V.M., Choudhary, M.I., Khan, S. & Karunaratne, V. 2012. Antimicrobial and toxicological activities of some depsides and depsidones. Journal of the National Science Foundation of Sri Lanka 40(1): 43-48.

Thell, A., Crespo, A., Divakar, P.K., Kärnefelt, I., Leavitt, S.D., Lumbsch, H.T. & Seaward, M.R.D. 2012. A review of the lichen family Parmeliaceae - history, phylogeny and current taxonomy. Nordic Journal of Botany 30(6): 641-664.

Türk, H., Yilmaz, M., Tay, T., Türk, A.Ö. & Kivanç, M. 2006. Antimicrobial activity of extracts of chemical races of the lichen Pseudevernia furfuracea and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents. Zeitschrift für Naturforschung C 61(7-8): 499-507.

Vivek, M.N., Manasa, M., Kambar, Y., Prashith Kekuda, T.R. & Raghavendra, H.L. 2014a. Antifungal efficacy of three bioactive Parmotrema species from Western Ghats of Karnataka, India. International Journal of Agriculture and Crop Sciences 7(12): 968-973.

Vivek, M.N., Kambar, Y., Manasa, M., Prashith Kekuda, T.R. & Vinayaka, K.S. 2014b. Radical scavenging and antibacterial activity of three Parmotrema species from Western Ghats of Karnataka, India. Journal of Applied Pharmaceutical Sciences 4(3): 86-91.

Zhang, Q.W., Lin, L.G. & Ye, W.C. 2018. Techniques for extraction and isolation of natural products: A comprehensive review. Chinese Medicine 13(20): 1-26.

 

*Corresponding author; email: muntaz@ukm.edu.my

   

 

 

previous