Sains Malaysiana 50(6)(2021): 1799-1814

http://doi.org/10.17576/jsm-2021-5006-25

 

Numerical Study on Phase-Fitted and Amplification-Fitted Diagonally Implicit Two Derivative Runge-Kutta Method for Periodic IVPs

(Kajian Berangka ke atas Suai-Fasa dan Suai-Pembesaran Pepenjuru Tersirat Kaedah Runge-Kutta untuk MNA Berkala)

 

NORAZAK SENU1,2, NUR AMIRAH AHMAD1*, ZARINA BIBI IBRAHIM1,2 & MOHAMED OTHMAN1,3

 

1Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Communication Technology and Network, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 26 June 2020/Accepted: 27 October 2020

 

ABSTRACT

A fourth-order two stage Phase-fitted and Amplification-fitted Diagonally Implicit Two Derivative Runge-Kutta method (PFAFDITDRK) for the numerical integration of first-order Initial Value Problems (IVPs) which exhibits periodic solutions are constructed. The Phase-Fitted and Amplification-Fitted property are discussed thoroughly in this paper. The stability of the method proposed are also given herewith. Runge-Kutta (RK) methods of the similar property are chosen in the literature for the purpose of comparison by carrying out numerical experiments to justify the accuracy and the effectiveness of the derived method.

 

Keywords: Diagonally implicit methods; initial values problems; ordinary differential equations; phase-fitted and amplification-fitted; stability region; two derivative Runge-Kutta method

 

ABSTRAK

Kaedah Runge-Kutta Dua Terbitan Pepenjuru Tersirat Suai-Fasa dan Suai-Pembesaran (RKDTPTSFSP) tahap dua peringkat empat untuk penyelesaian pengamiran berangka Masalah Nilai Awal (MNA) peringkat pertama yang mengandungi penyelesaian berkala dibina. Sifat suai-fasa dan suai-pembesaran dibincangkan secara menyeluruh dalam kertas kajian ini. Kestabilan kaedah yang dicadangkan adalah seperti berikut. Kaedah Runge-Kutta (RK) dengan sifat yang sama dipilih di dalam kajian sorotan untuk tujuan perbandingan dengan menjalankan uji kaji berangka untuk memastikan kejituan dan keberkesanan kaedah yang diterbitkan.

 

Kata kunci: Kaedah pepenjuru tersirat; kaedah Runge-Kutta dua terbitan; masalah nilai awal; persamaan pembezaan biasa; rantau kestabilan; suai-fasa dan suai-pembesaran

 

REFERENCES

Adel, F., Senu, N., Ismail, F. & Majid, Z.A. 2016. New efficient phase-fitted and amplification-fitted Runge-Kutta method for oscillatory problems. International Journal of Pure and Applied Mathematics 107(1): 69-86.

Ahmad, N.A., Senu, N. & Ismail, F. 2016. Phase-fitted and amplification-fitted diagonally implicit Runge-Kutta method for the numerical solution of periodic problems. Asian Journal of Mathematics and Computer Research 12(4): 252-264.

Anastassi, Z.A. & Simos, T.E. 2005. Trigonometrically-fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry 37(3): 281-293.

Atkinson, K., Han, W. & Stewart, D.E. 2009. Numerical Solution of Ordinary Differential Equations. Haboken, New Jersey: John Wiley & Sons, Inc. pp. 67-94.

Chan, R.P. & Tsai, A.Y. 2010. On explicit two-derivative Runge-Kutta methods. Numerical Algorithm 53: 171-194.

Chen, Z., Li, J., Zhang, R. & You, X. 2015. Exponentially fitted two-derivative Runge-Kutta methods for simulation of oscillatory genetic regulatory systems. Computational and Mathematical Methods in Medicine 2015: 689137.

Chen, Z., You, X., Shu, X. & Zhang, M. 2012. A new family of phase-fitted and amplification-fitted Runge-Kutta type methods for oscillators. Journal of Applied Mathematics 2012: Article ID. 236281.

Demba, M.A., Senu, N. & Ismail, F. 2016a. Trigonometrically-fitted explicit four-stage fourth-order Runge-Kutta-Nyström method for the solution of initial value problems with oscillatory behavior. Global Journal of Pure and Applied Mathematics 12(1): 67-80.

Demba, M.A., Senu, N. & Ismail, F. 2016b. Fifth-order four-stage explicit trigonometrically-fitted Runge-Kutta-Nyström methods. In Recent Advances in Mathematical Sciences, edited by Kılıçman, A., Srivastava H.M., Mursaleen, M. & Majid, Z.A. Singapore: SpringerNature. pp. 27-36.

Ehigie, J.O., Diao, D., Zhang, R., Fang, Y., Hou, X. & You, X. 2018. Exponentially-Fitted symmetric and symplectic DIRK methods for oscillatory hamiltonian systems. Journal of Mathematical Chemistry 56(4): 1130-1152.

Fang, Y., You, X. & Ming, Q. 2013. Exponentially fitted two-derivative Runge-Kutta Methods for the Schrödinger equation. International Journal of Modern Physics C 24(10): 1350073.

Fawzi, F.A., Senu, N., Ismail, F. & Majid, Z.A. 2015. A phase-fitted and amplification-fitted modified Runge-Kutta method of fourth order for periodic initial value problems. research and education. In 2015 International Conference on Research and Education in Mathematics (ICREM7). IEEE. pp. 25-28.

Henrici, P. 1962. Discrete Variable Methods in Ordinary Differential Equations. New York: John Wiley & Sons, Inc. 

Kalogiratou, Z. 2013. Diagonally implicit trigonometrically-fitted symplectic Runge-Kutta methods. Applied Mathematics and Computation 219(14): 7406-7412.

Konguetsof, A. & Simos, T.E. 2003. An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems. Computers & Mathematics with Applications 45(1-3): 547-554.

Kosti, A.A., Anastassi, Z.A. & Simos, T.E. 2012a. An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems. Computer Physics Communications 183(3): 470-479.

Kosti, A.A., Anastassi, Z.A. & Simos, T.E. 2012b. Construction of an explicit Runge-Kutta-Nyström method with constant coefficients and of a phase-fitted and amplification-fitted explicit Runge-Kutta-Nyström method for the numerical solution of the Schrödinger Equation. In AIP Conference Proceedings. AIP Publishing LLC. 1504(1): 1185-1187.

Lambert, J.D. 1991. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Baffins Lane, Chichester: John Wiley & Sons Ltd. pp. 149-212.

Pokorny, P. 2009. Continuation of periodic solutions of dissipative and conservative systems: Application to elastic pendulum. Mathematical Problems in Engineering 2009: Article ID. 104547.

Stiefel, E. & Bettis, D.G. 1969. Stabilization of Cowell’s method. Numerische Mathematik 13(2): 154-175.

Suli, E. & Mayers, D.F. 2003. An Introduction to Numerical Analysis. Trumpington Street, Cambridge: Cambridge University Press.

Simos, T.E. 1998. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Computer Physics Communications 115(1): 1-8.

Van de Vyver, H. 2007. An explicit Numerov-type method for second-order differential equations with oscillating solutions. Computers & Mathematics with Applications 53(9): 1339-1348.

van der Houwen, P.J. & Sommeijer, B.P. 1987. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solution. SIAM Journal on Numerical Analysis 24(3): 595-617.

Zhang, Y., Che, H., Fang, Y. & You, X. 2013. A new trigonometrically fitted two-derivative Runge-Kutta method for the numerical solution of the Schrödinger equation and related problems. Journal of Applied Mathematics 2013: Article ID. 937858.

 

*Corresponding author; email: nuramirah_ahmad@yahoo.com

 

 

   

previous