Sains Malaysiana 50(9)(2021): 2743-2754

http://doi.org/10.17576/jsm-2021-5009-20

 

The Effects of In-Process Cooling during Friction Stir Welding of 7475 Aluminium Alloy

(Kesan Proses Penyejukan Dalam semasa Kimpalan Kacauan Geseran Aloi Aluminium 7475)

 

ASHISH JACOB1, SACHIN MAHESHWARI1, ARSHAD NOOR SIDDIQUEE2, ABDULRAHMAN AL-AHMARI3,4, MUSTUFA HAIDER ABIDI4*, SERGEY KONOVALOV5 & XIZHANG CHEN6

 

1Division of Manufacturing Processes and Automation Engineering, Netaji Subhas University of Technology, (formerly Netaji Subhas Institute of Technology), New Delhi-110078, India

 

2Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), New Delhi-110025, India

 

3Industrial Engineering Department, College of Engineering, King Saud University, Riyadh-11421, Saudi Arabia

 

4Raytheon Chair for Systems Engineering, Advanced Manufacturing Institute, King Saud University, Riyadh-11421, Saudi Arabia

 

5Department of Metals Engineering Material Science, Samara National Research University, Samara-443086, Russia

 

6School of Mechanical and Electrical Engineering, Wenzhou University, Zhejiang Province-325035, China

 

Received: 5 January 2020/Accepted: 3 January 2021

 

ABSTRACT

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.

 

Keywords: AA-7475; age-hardenable; friction stir welding; in-process cooling; joints cooling; liquid nitrogen

 

ABSTRAK

Aloi boleh dikeraskan seperti AA7475 sukar disambung dengan sempurna melalui teknik kimpalan lakuran. Ia memerlukan teknik kimpalan bukan konvensional seperti proses kimpalan kacauan geseran untuk menyambung aloi tersebut. Dalam kajian ini, tiga keadaan penyejukan yang berbeza, iaitu keadaan suhu kriogenik, sub-sifar dan sifar darjah Celsius telah dianalisis untuk memahami kesannya ke atas proses kimpalan. Proses penyejukan dalam didapati berkesan dan mempertingkatkan sifat mekanik sambungan terkimpal. Mikrostruktur yang stabil telah diperhati di bawah mikroskop metalurgi. Keberkesanan kimpalan yang baik telah diperhati pada setiap sampel yang menunjukkan sambungan logam yang kuat. Keadaan sejuk semasa kimpalan telah memberi kesan positif ke atas sambungan yang dilakukan.

 

Kata kunci: AA-7475; cecair nitrogen; kimpalan pengacauan geseran; penyejukan dalam proses; penyejukan sambungan

 

REFERENCES

Baillie, P., Campbell, S.W., Galloway, A.M., Cater, S.R. & McPherson, N.A. 2015. Friction stir welding of 6 mm thick carbon steel underwater and in air. Science and Technology of Welding and Joining 20(7): 585-593. doi: 10.1179/1362171815Y.0000000042.

Berg, L.K., Gjønnes, J., Hansen, V., Li, X.Z., Knutson-Wedel, M., Waterloo, G., Schryvers, D. & Wallenberg, L.R. 2001. Gp-Zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Materialia 49(17): 3443-3451. https://doi.org/10.1016/S1359-6454(01)00251-8.

Çam, G. & İpekoğlu, G. 2017. Recent developments in joining of aluminum alloys. The International Journal of Advanced Manufacturing Technology 91(5): 1851-1866. doi: 10.1007/s00170-016-9861-0.

Çam, G., İpekoğlu, G. & Tarık Serindağ, H. 2014. Effects of use of higher strength interlayer and external cooling on properties of friction stir welded Aa6061-T6 joints. Science and Technology of Welding and Joining 19(8): 715-720. doi: 10.1179/1362171814Y.0000000247.

Çevik, B., Özçatalbaş, Y. & Gülenç, B. 2016. Effect of tool material on microstructure and mechanical properties in friction stir welding. Materials Testing 58(1): 36-42. doi: 10.3139/120.110816.

Fratini, L., Buffa, G. & Shivpuri, R. 2010. Mechanical and metallurgical effects of in process cooling during friction stir welding of Aa7075-T6 butt joints. Acta Materialia 58(6): 2056-2067. https://doi.org/10.1016/j.actamat.2009.11.048.

Hofmann, D.C. & Vecchio, K.S. 2007. Thermal history analysis of friction stir processed and submerged friction stir processed aluminum. Materials Science and Engineering: A 465(1): 165-175. https://doi.org/10.1016/j.msea.2007.02.056.

Hosseini, M. & Danesh Manesh, H. 2010. Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy. Materials & Design 31(10): 4786-4791. https://doi.org/10.1016/j.matdes.2010.05.007.

Huang, Y.X., Wan, L., Lv, Z.L., Lv, S.X., Zhou, L. & Feng, J.C. 2016. Microstructure and microhardness of aluminium alloy friction stir welds with heat treatment. Science and Technology of Welding and Joining 21(8): 638-644. doi: 10.1080/13621718.2016.1152748.

Jacob, A., Maheshwari, S., Noor Siddiquee, A. & Gangil, N. 2018. Improvements in strength and microstructural behaviour of friction stir welded 7475 aluminium alloy using in-process cooling. Materials Research Express 5(7): 076518. doi: 10.1088/2053-1591/aad0e6.

Jariyaboon, M., Davenport, A.J., Ambat, R., Connolly, B.J., Williams, S.W. & Price, D.A. 2009. The effect of cryogenic CO2 cooling on corrosion behaviour of friction stir welded Aa2024-T351. Corrosion Engineering, Science and Technology 44(6): 425-432. doi: 10.1179/147842208X373173.

Kishta, E.E. & Darras, B. 2016. Experimental investigation of underwater friction-stir welding of 5083 marine-grade aluminum alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230(3): 458-465. doi: 10.1177/0954405414555560.

Kumar, L., Yazar, K.U. & Pramanik, S. 2019. Effect of Fusion and friction stir welding techniques on the microstructure, crystallographic texture and mechanical properties of mild steel. Materials Science and Engineering: A 754: 400-410. https://doi.org/10.1016/j.msea.2019.03.100.

Liu, X.C., Sun, Y.F., Nagira, T., Ushioda, K. & Fujii, H. 2019. Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper. Science and Technology of Welding and Joining 24(4): 352-359. doi: 10.1080/13621718.2018.1556436.

Liu, Z., Wang, Y., Ji, S. & Li, Z. 2018. Effects of intense cooling on microstructure and properties of friction-stir-welded Ti–6al–4v alloy. Materials Science and Technology 34(2): 209-219. doi: 10.1080/02670836.2017.1366739.

Miura, T., Ueji, R. & Fujii, H. 2018. Optimization of microstructure at Ni-C steel joint by friction stir welding with CO2 cooling. Welding International 32(5): 338-344. doi: 10.1080/09507116.2017.1346831.

Mofid, M.A., Abdollah-zadeh, A. & Malek Ghaini, F. 2012. The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy. Materials & Design (1980-2015) 36: 161-167. https://doi.org/10.1016/j.matdes.2011.11.004.

Nelson, T.W., Steel, R.J. & Arbegast, W.J. 2003. In situ thermal studies and post-weld mechanical properties of friction stir welds in age hardenable aluminium alloys. Science and Technology of Welding and Joining 8(4): 283-288. doi: 10.1179/136217103225011005.

Patel, V., Li, W., Wang, G., Wang, F., Vairis, A. & Niu, P. 2019. Friction stir welding of dissimilar aluminum alloy combinations: State-of-the-art. Metals 9(3): 270.

Sakurada, D., Katoh, K. & Tokisue, H. 2002. Underwater friction welding of 6061 aluminum alloy. Journal of Japan Institute of Light Metals 52(1): 2-6. doi: 10.2464/jilm.52.2.

Sharma, C., Dwivedi, D.K. & Kumar, P. 2012. Influence of in-process cooling on tensile behaviour of friction stir welded joints of Aa7039. Materials Science and Engineering: A 556: 479-487. https://doi.org/10.1016/j.msea.2012.07.016.

Weston, J. & Wallach, R. 1998. Mechanical properties of laser welds in aluminium alloys. Paper presented at the International Conference; 7th, Joints in Aluminium: INALCO '98, Cambridge, UK.

Xu, N., Ueji, R. & Fujii, H. 2015. Enhanced mechanical properties of 70/30 brass joint by multi-pass friction stir welding with rapid cooling. Science and Technology of Welding and Joining 20(2): 91-99. doi: 10.1179/1362171814Y.0000000261.

Xu, W.F., Liu, J.H., Chen, D.L., Luan, G.H. & Yao, J.S. 2012. Improvements of strength and ductility in aluminum alloy joints via rapid cooling during friction stir welding. Materials Science and Engineering: A 548: 89-98. https://doi.org/10.1016/j.msea.2012.03.094.

Yi, D., Mironov, S., Sato, Y.S. & Kokawa, H. 2016. Effect of cooling rate on microstructure of friction-stir welded Aa1100 aluminum alloy. Philosophical Magazine 96(18): 1965-1977. doi: 10.1080/14786435.2016.1185186.

Zhang, H.J., Liu, H.J. & Yu, L. 2011. Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints. Materials & Design 32(8): 4402-4407. doi: https://doi.org/10.1016/j.matdes.2011.03.073.

 

*Corresponding author; email: mabidi@ksu.edu.sa

 

       

     

previous