Sains Malaysiana 50(9)(2021): 2743-2754
http://doi.org/10.17576/jsm-2021-5009-20
The Effects of In-Process Cooling
during Friction Stir Welding of 7475 Aluminium Alloy
(Kesan Proses Penyejukan Dalam semasa Kimpalan Kacauan Geseran Aloi Aluminium 7475)
ASHISH
JACOB1, SACHIN MAHESHWARI1, ARSHAD NOOR SIDDIQUEE2,
ABDULRAHMAN AL-AHMARI3,4, MUSTUFA HAIDER ABIDI4*, SERGEY
KONOVALOV5 & XIZHANG CHEN6
1Division of Manufacturing Processes and
Automation Engineering, Netaji Subhas University of Technology, (formerly
Netaji Subhas Institute of Technology), New Delhi-110078, India
2Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), New
Delhi-110025, India
3Industrial Engineering Department, College
of Engineering, King Saud University, Riyadh-11421, Saudi Arabia
4Raytheon Chair for Systems Engineering, Advanced
Manufacturing Institute, King Saud University, Riyadh-11421, Saudi Arabia
5Department of Metals Engineering Material
Science, Samara National Research University, Samara-443086, Russia
6School of Mechanical and Electrical
Engineering, Wenzhou University, Zhejiang Province-325035, China
Received:
5 January 2020/Accepted: 3 January 2021
ABSTRACT
Certain age hardenable alloys such as AA7475 cannot be joined
with perfection using fusion welding techniques. This requires non-conventional
welding technique such as friction stir welding process to join these
‘difficult to weld’ alloys. In this study, three different cooling conditions
i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have
been analyzed to understand its impact on the welding process. In-process
cooling was found to behave effectively and also enhanced the mechanical
properties of the welded joints. A stable microstructure was clearly seen in
the images observed under the metallurgical microscope. The weld efficiencies
were found to be good in each of the samples which are indicative of a strong
metallic joint. The effective cooling conditions employed had an overall
positive impact on the joint.
Keywords: AA-7475; age-hardenable;
friction stir welding; in-process cooling; joints cooling; liquid nitrogen
ABSTRAK
Aloi boleh dikeraskan seperti AA7475 sukar disambung dengan sempurna melalui teknik kimpalan lakuran. Ia memerlukan teknik kimpalan bukan konvensional seperti proses kimpalan kacauan geseran untuk menyambung aloi tersebut. Dalam kajian ini, tiga keadaan penyejukan yang berbeza, iaitu keadaan suhu kriogenik, sub-sifar dan sifar darjah Celsius telah dianalisis untuk memahami kesannya ke atas proses kimpalan. Proses penyejukan dalam didapati berkesan dan mempertingkatkan sifat mekanik sambungan terkimpal. Mikrostruktur yang stabil telah diperhati di bawah mikroskop metalurgi. Keberkesanan kimpalan yang baik telah diperhati pada setiap sampel yang menunjukkan sambungan logam yang kuat. Keadaan sejuk semasa kimpalan telah memberi kesan positif ke atas sambungan yang dilakukan.
Kata kunci: AA-7475; cecair nitrogen; kimpalan pengacauan geseran; penyejukan dalam proses; penyejukan sambungan
REFERENCES
Baillie, P., Campbell, S.W., Galloway, A.M., Cater, S.R. &
McPherson, N.A. 2015. Friction stir welding of 6 mm thick carbon steel
underwater and in air. Science and
Technology of Welding and Joining 20(7): 585-593. doi:
10.1179/1362171815Y.0000000042.
Berg, L.K.,
Gjønnes, J., Hansen, V., Li, X.Z., Knutson-Wedel, M., Waterloo, G., Schryvers,
D. & Wallenberg, L.R. 2001. Gp-Zones in Al–Zn–Mg alloys and their role in
artificial aging. Acta Materialia 49(17):
3443-3451. https://doi.org/10.1016/S1359-6454(01)00251-8.
Çam, G. &
İpekoğlu, G. 2017. Recent developments in joining of aluminum alloys. The International Journal of Advanced
Manufacturing Technology 91(5): 1851-1866. doi: 10.1007/s00170-016-9861-0.
Çam, G.,
İpekoğlu, G. & Tarık Serindağ, H. 2014. Effects of use
of higher strength interlayer and external cooling on properties of friction
stir welded Aa6061-T6 joints. Science and
Technology of Welding and Joining 19(8): 715-720. doi:
10.1179/1362171814Y.0000000247.
Çevik, B.,
Özçatalbaş, Y. & Gülenç, B. 2016. Effect of tool material on
microstructure and mechanical properties in friction stir welding. Materials Testing 58(1): 36-42. doi:
10.3139/120.110816.
Fratini, L.,
Buffa, G. & Shivpuri, R. 2010. Mechanical and metallurgical effects of in
process cooling during friction stir welding of Aa7075-T6 butt joints. Acta Materialia 58(6): 2056-2067.
https://doi.org/10.1016/j.actamat.2009.11.048.
Hofmann, D.C.
& Vecchio, K.S. 2007. Thermal history analysis of friction stir processed
and submerged friction stir processed aluminum. Materials Science and Engineering: A 465(1): 165-175.
https://doi.org/10.1016/j.msea.2007.02.056.
Hosseini, M. &
Danesh Manesh, H. 2010. Immersed friction stir welding of ultrafine grained
accumulative roll-bonded Al alloy. Materials
& Design 31(10): 4786-4791.
https://doi.org/10.1016/j.matdes.2010.05.007.
Huang, Y.X., Wan,
L., Lv, Z.L., Lv, S.X., Zhou, L. & Feng, J.C. 2016. Microstructure and
microhardness of aluminium alloy friction stir welds with heat treatment. Science and Technology of Welding and
Joining 21(8): 638-644. doi: 10.1080/13621718.2016.1152748.
Jacob, A.,
Maheshwari, S., Noor Siddiquee, A. & Gangil, N. 2018. Improvements in
strength and microstructural behaviour of friction stir welded 7475 aluminium
alloy using in-process cooling. Materials
Research Express 5(7): 076518. doi: 10.1088/2053-1591/aad0e6.
Jariyaboon, M.,
Davenport, A.J., Ambat, R., Connolly, B.J., Williams, S.W. & Price, D.A.
2009. The effect of cryogenic CO2 cooling on corrosion behaviour of
friction stir welded Aa2024-T351. Corrosion
Engineering, Science and Technology 44(6): 425-432. doi:
10.1179/147842208X373173.
Kishta, E.E. &
Darras, B. 2016. Experimental investigation of underwater friction-stir welding
of 5083 marine-grade aluminum alloy. Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture 230(3): 458-465. doi: 10.1177/0954405414555560.
Kumar, L., Yazar,
K.U. & Pramanik, S. 2019. Effect of Fusion and friction stir welding
techniques on the microstructure, crystallographic texture and mechanical
properties of mild steel. Materials
Science and Engineering: A 754: 400-410.
https://doi.org/10.1016/j.msea.2019.03.100.
Liu, X.C., Sun,
Y.F., Nagira, T., Ushioda, K. & Fujii, H. 2019. Experimental evaluation of
strain and strain rate during rapid cooling friction stir welding of pure copper. Science and Technology of Welding and
Joining 24(4): 352-359. doi: 10.1080/13621718.2018.1556436.
Liu, Z., Wang, Y.,
Ji, S. & Li, Z. 2018. Effects of intense cooling on microstructure and
properties of friction-stir-welded Ti–6al–4v alloy. Materials Science and Technology 34(2): 209-219. doi:
10.1080/02670836.2017.1366739.
Miura, T., Ueji,
R. & Fujii, H. 2018. Optimization of microstructure at Ni-C steel joint by
friction stir welding with CO2 cooling. Welding International 32(5): 338-344. doi: 10.1080/09507116.2017.1346831.
Mofid, M.A.,
Abdollah-zadeh, A. & Malek Ghaini, F. 2012. The effect of water cooling
during dissimilar friction stir welding of Al alloy to Mg alloy. Materials & Design (1980-2015) 36:
161-167. https://doi.org/10.1016/j.matdes.2011.11.004.
Nelson, T.W.,
Steel, R.J. & Arbegast, W.J. 2003. In situ thermal studies and
post-weld mechanical properties of friction stir welds in age hardenable
aluminium alloys. Science and Technology
of Welding and Joining 8(4): 283-288. doi: 10.1179/136217103225011005.
Patel, V., Li, W.,
Wang, G., Wang, F., Vairis, A. & Niu, P. 2019. Friction stir welding of
dissimilar aluminum alloy combinations: State-of-the-art. Metals 9(3): 270.
Sakurada, D.,
Katoh, K. & Tokisue, H. 2002. Underwater friction welding of 6061 aluminum
alloy. Journal of Japan Institute of
Light Metals 52(1): 2-6. doi: 10.2464/jilm.52.2.
Sharma, C.,
Dwivedi, D.K. & Kumar, P. 2012. Influence of in-process cooling on tensile
behaviour of friction stir welded joints of Aa7039. Materials Science and Engineering: A 556: 479-487.
https://doi.org/10.1016/j.msea.2012.07.016.
Weston, J. &
Wallach, R. 1998. Mechanical properties of laser welds in aluminium alloys.
Paper presented at the International Conference; 7th, Joints in Aluminium:
INALCO '98, Cambridge, UK.
Xu, N., Ueji, R.
& Fujii, H. 2015. Enhanced mechanical properties of 70/30 brass joint by
multi-pass friction stir welding with rapid cooling. Science and Technology of Welding and Joining 20(2): 91-99. doi:
10.1179/1362171814Y.0000000261.
Xu, W.F., Liu,
J.H., Chen, D.L., Luan, G.H. & Yao, J.S. 2012. Improvements of strength and
ductility in aluminum alloy joints via rapid cooling during friction stir
welding. Materials Science and
Engineering: A 548: 89-98. https://doi.org/10.1016/j.msea.2012.03.094.
Yi, D., Mironov,
S., Sato, Y.S. & Kokawa, H. 2016. Effect of cooling rate on microstructure
of friction-stir welded Aa1100 aluminum alloy. Philosophical Magazine 96(18): 1965-1977. doi:
10.1080/14786435.2016.1185186.
Zhang, H.J., Liu,
H.J. & Yu, L. 2011. Microstructure and mechanical properties as a function
of rotation speed in underwater friction stir welded aluminum alloy joints. Materials & Design 32(8): 4402-4407.
doi: https://doi.org/10.1016/j.matdes.2011.03.073.
*Corresponding
author; email: mabidi@ksu.edu.sa
|