Sains Malaysiana 51(10)(2022): 3383-3399

http://doi.org/10.17576/jsm-2022-5110-22

 

Antidepressant Potential of Daidzein through Modulation of Endocannabinoid System by Targeting Fatty Acid Amide Hydrolase

(Potensi Anti-kemurungan Daidzein melalui Modulasi Sistem Endokanabinoid dengan Menyasarkan Asid Lemak Amida Hidrolase)

 

WAHID ZADA1, GHULAM MURTAZA2, GHAZALA IQBAL3, GHULAM ABBAS4, SHUJAAT ALI KHAN1 & ABDUL MANNAN1,*

 

1Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan

2Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 5400, Pakistan

3Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan

4Department of Pharmacology, Faculty of Pharmacy Ziauddin University, Karachi Pakistan

 

Received: 17 March 2022/Accepted: 30 May 2022

 

Abstract

In recent decades, the identification of natural compounds that modulate the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition has provided an interesting area of research. Daidzein, which is an isoflavone, has neurobiological activities that are effective against several neurological disorders which include depression. This study aimed to investigate the FAAH inhibitory activity of Daidzein through in-silico analysis via Molecular Operating Environment software together with the in-vitro FAAH inhibitory assay. Furthermore, the anti-depressive effect of Daidzein (20 mg/kg) was examined via open field test and forced swim test in both male and female mice groups. Finally, the level of depression and stress was measured by the plasma corticosterone level.  Molecular docking has shown the probable binding of Daidzein with the FAAH enzyme via its ser-ser-lys catalytic triad. Daidzein binds to the active pocket of FAAH with excellent binding energy of -64.77 Kcal/mol and binding affinity of -11.77 Kcal/mol. The findings reported that Daidzein inhibited the FAAH enzyme with IC50 value at 1.3±0.13 µM concentration. The open field test showed that Daidzein had no significant effect on locomotory activity in both male and female groups compared to fluoxetine and Arch-5HT group. Daidzein has significantly decreased the immobility time in forced swim test, which is an indicator of an anti-depressive effect. The corticosterone level that regulates depression was significantly decreased in both male and female Daidzein-treated mice groups. This study highlighted the role of Daidzein as a therapeutic agent for depression via the inhibition of FAAH and modulation of corticosterone levels.

 

Keywords: Corticosterone; depression; endocannabinoid system; forced swim test; HPA-axis; molecular docking; open field test

 

Abstrak

Dalam beberapa dekad kebelakangan ini, pengenalpastian sebatian semula jadi yang memodulasi sistem endokanabinoid oleh perencatan asid lemak amide hidrolase (FAAH) telah menyediakan bidang penyelidikan yang menarik. Daidzein yang merupakan isoflavon, mempunyai aktiviti neurobiologi yang berkesan terhadap beberapa gangguan neurologi termasuk kemurungan. Penyelidikan ini bertujuan untuk mengkaji aktiviti perencatan FAAH Daidzein melalui analisis in-silico melalui perisian Persekitaran Kendalian Molekul bersama-sama dengan ujian perencatan FAAH in-vitro. Tambahan pula, kesan anti-kemurungan Daidzein (20 mg/kg) telah diperiksa melalui ujian lapangan terbuka dan ujian berenang paksa pada kumpulan tikus jantan dan betina. Akhirnya, tahap kemurungan dan tekanan diukur dengan tahap kortikosteron plasma. Dok molekul telah menunjukkan kemungkinan pengikatan Daidzein dengan enzim FAAH melalui triad pemangkin ser-ser-lys. Daidzein mengikat pada poket aktif FAAH dengan tenaga pengikat yang sangat baik iaitu -64.77 Kcal/mol dan pertalian mengikat -11.77 Kcal/mol. Hasil menunjukkan bahawa Daidzein merencat enzim FAAH dengan nilai IC50 pada kepekatan 1.3±0.13 µM. Ujian lapangan terbuka menunjukkan bahawa Daidzein tidak mempunyai kesan yang signifikan terhadap aktiviti lokomotor pada kedua-dua kumpulan jantan dan betina berbanding kumpulan fluoksetin dan Arch-5HT. Daidzein telah mengurangkan dengan ketara masa pergerakan dalam ujian berenang paksa yang merupakan penunjuk kesan anti-kemurungan. Tahap kortikosteron yang mengawal kemurungan telah menurun dengan ketara pada kumpulan tikus jantan dan betina yang dirawat Daidzein. Kajian ini menekankan peranan Daidzein sebagai agen terapeutik untuk kemurungan melalui perencatan FAAH dan modulasi tahap kortikosteron.

 

Kata kunci: Dok molekul; kemurungan; kortikosteron; paksiHPA; sistem endokanabinoid; ujian berenang paksa; ujian lapangan terbuka

 

REFERENCES

Ahmad, H., Rauf, K., Zada, W., McCarthy, M., Abbas, G., Anwar, F. & Shah, A.J. 2020. Kaempferol facilitated extinction learning in contextual fear conditioned rats via inhibition of fatty-acid amide hydrolase. Molecules 25(20): 4683.

Alexopoulos, G.S. 2019. Mechanisms and treatment of late-life depression. Translational Psychiatry 9(1): 1-16.

Almukadi, H., Wu, H., Böhlke, M., Kelley, C.J., Maher, T.J. & Pino-Figueroa, A. 2013. The macamide N-3-methoxybenzyl-linoleamide is a time-dependent fatty acid amide hydrolase (FAAH) inhibitor. Molecular Neurobiology 48(2): 333-339.

Alshehri, M.M., Sharifi-Rad, J., Herrera-Bravo, J., Jara, E.L., Salazar, L.A., Kregiel, D., Uprety, Y., Akram, M., Iqbal, M., Martorell, M., Torrens-Mas, M., Pons, D.G., Dastan, S.D., Cruz-Martins, N., Ozdemir, F.A., Kumar, M. & Cho, W.C. 2021. Therapeutic potential of isoflavones with an emphasis on daidzein. Oxidative Medicine and Cellular Longevity 2021: 6331630.

Bari, M., Battista, N., Fezza, F., Gasperi, V. & Maccarrone, M. 2006. New insights into endocannabinoid degradation and its therapeutic potential. Mini Reviews in Medicinal Chemistry 6(3): 257-268.

Beck, A.T., Alford, B.A., Beck, A.T. & Alford, B.A. 2014. Depression. Philadelphia: University of Pennsylvania Press.

Bedse, G., Colangeli, R., Lavecchia, A.M., Romano, A., Altieri, F., Cifani, C., Cassano, T. & Gaetani, S. 2014. Role of the basolateral amygdala in mediating the effects of the fatty acid amide hydrolase inhibitor URB597 on HPA axis response to stress. European Neuropsychopharmacology 24(9): 1511-1523.

Borkotoky, S., Meena, C.K. & Murali, A. 2016. Interaction analysis of T7 RNA polymerase with heparin and its low molecular weight derivatives–an in silico approach. Bioinformatics and Biology Insights 10: BBI. S40427.

Bruno, A., Lembo, F., Novellino, E., Stornaiuolo, M. & Marinelli, L. 2014. Beyond radio-displacement techniques for Identification of CB 1 Ligands: The First Application of a Fluorescence-quenching Assay. Scientific Reports 4(1): 1-9.

Can, A., Dao, D.T., Arad, M., Terrillion, C.E., Piantadosi, S.C. & Gould, T.D. 2012. The mouse forced swim test.  Journal of Visualized Experiments 59: e3638.

Castillo, P.E., Younts, T.J., Chávez, A.E. & Hashimotodani, Y. 2012. Endocannabinoid signaling and synaptic function. Neuron 76(1): 70-81.

Chadwick, V.L., Rohleder, C., Koethe, D. & Leweke, F.M. 2020. Cannabinoids and the endocannabinoid system in anxiety, depression, and dysregulation of emotion in humans.  Current Opinion in Psychiatry 33(1): 20-42.

Chen, L., Wang, X., Zhang, Y., Zhong, H., Wang, C., Gao, P. & Li, B. 2021. Daidzein alleviates hypothalamic-pituitary-adrenal axis hyperactivity, ameliorates depression-like behavior, and partly rectifies circulating cytokine imbalance in two rodent models of depression.  Frontiers in Behavioral Neuroscience 15: 671864.

Choi, R.C.Y., Zhu, J.T.T., Yung, A.W.Y., Lee, P.S.C., Xu, S.L., Guo, A.J.Y., Zhu, K.Y., Dong, T.T.X. & Tsim, K.W.K. 2013. Synergistic action of flavonoids, baicalein, and daidzein in estrogenic and neuroprotective effects: A development of potential health products and therapeutic drugs against Alzheimer’s disease. Evidence-Based Complementary and Alternative Medicine 2013: 635694.

Cota, D., Steiner, M-A., Marsicano, G., Cervino, C., Herman, J.P., Grubler, Y., Stalla, J., Pasquali, R., Lutz, B. & Stalla, G.K. 2007. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology 148(4): 1574-1581.

Cravatt, B.F., Giang, D.K., Mayfield, S.P., Boger, D.L., Lerner, R.A. & Gilula, N.B. 1996. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.  Nature 384(6604): 83-87.

Cristino, L., Bisogno, T. & Di Marzo, V. 2020. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nature Reviews Neurology 16(1): 9-29.

Cryan, J.F., Page, M.E. & Lucki, I. 2005. Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 182(3): 335-344.

Fowler, C.J., Tiger, G., López-Rodríguez, M.L., Viso, A., Ortega-Gutiérrez, S. & Ramos, J.A. 2003. Inhibition of fatty acid amidohydrolase, the enzyme responsible for the metabolism of the endocannabinoid anandamide, by analogues of arachidonoyl-serotonin. Journal of Enzyme Inhibition and Medicinal Chemistry 18(3): 225-231.

Gaynes, B.N., Gavin, N., Meltzer-Brody, S., Lohr, K.N., Swinson, T., Gartlehner, G., Brody, S. & Miller, W.C. 2005. Perinatal depression: Prevalence, screening accuracy, and screening outcomes: Summary. AHRQ Evidence Report Summaries.

Gould, T.D., Dao, D.T. & Kovacsics, C.E. 2009. The open field test. Mood and Anxiety Related Phenotypes in Mice. pp. 1-20.

Gu, Z-Y., An, S-C., Mao, Y. & Zhang, Z-T. 2006. Study on the antidepressant effects of daidzein sulfonic sodium [J]. Journal of Shaanxi Normal University (Natural Science Edition) 3.

Guo, J.M., Xiao, B.X., Liu, D.H., Grant, M., Zhang, S., Lai, Y.F., Guo, Y.B. & Liu, Q. 2004. Biphasic effect of daidzein on cell growth of human colon cancer cells. Food and Chemical Toxicology 42(10): 1641-1646.

Hintz, K.K. & Ren, J. 2004. Phytoestrogenic isoflavones daidzein and genistein reduce glucose‐toxicity‐induced cardiac contractile dysfunction in ventricular myocytes. Endocrine Research 30(2): 215-223.

Jaiswal, S., Tripathi, R.K.P. & Ayyannan, S.R. 2018. Scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors: Synthesis and evaluation. Biomedicine and Pharmacotherapy 107: 1611-1623.

Johnson, D.S., Stiff, C., Lazerwith, S.E., Kesten, S.R., Fay, L.K., Morris, M., Beidler, D., Liimatta, M.B., Smith, S.E. & Dudley. D.T. 2011. Discovery of PF-04457845: A highly potent, orally bioavailable, and selective urea FAAH inhibitor. ACS Medicinal Chemistry Letters 2(2): 91-96.

Katona, I. & Freund, T.F. 2012. Multiple functions of endocannabinoid signaling in the brain.  Annual Review of Neuroscience 35: 529-558.

Kessler, R.C. 2003. Epidemiology of women and depression. Journal of Affective Disorders 74(1): 5-13.

Khan, A., Musgnung, J., Ramey, T., Messig, M., Buckley, G. & Ninan, P.T. 2014. Abrupt discontinuation compared with a 1-week taper regimen in depressed outpatients treated for 24 weeks with desvenlafaxine 50 mg/d. Journal of Clinical Psychopharmacology 34(3): 365-368.

Ko, Y-H., Kwon, S-H., Ma, S-X., Seo, J-Y., Lee, B-R., Kim, K., Kim, S.Y., Lee, S-Y. & Jang, C-G. 2018a. The memory-enhancing effects of 7, 8, 4’-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Research Bulletin 142: 197-206.

Ko, Y-H., Kim, S.Y., Lee, S-Y. & Jang, C-G. 2018b. 6, 7, 4′-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice. European Journal of Pharmacology 826: 140-147.

Kornstein, S.G., Schatzberg, A.F., Thase, M.E., Yonkers, K.A., McCullough, J.P., Keitner, G.I., Gelenberg, A.J., Ryan, C.E., Hess, A.L. & Harrison, W. 2000. Gender differences in chronic major and double depression. Journal of Affective Disorders 60(1): 1-11.

Krebs-Kraft, D.L., Hill, M.N., Hillard, C.J. & McCarthy, M.M. 2010. Sex difference in cell proliferation in developing rat amygdala mediated by endocannabinoids has implications for social behavior. Proceedings of the National Academy of Sciences 107(47): 20535-20540.

Kuehner, C. 2003. Gender differences in unipolar depression: An update of epidemiological findings and possible explanations. Acta Psychiatrica Scandinavica 108(3): 163-174.

Kumar, Y.N., Kumar, P.S., Sowjenya, G., Rao, V.K., Yeswanth, S., Prasad, U.V., Pradeepkiran, J.A., Sarma, P.V.G.K. & Bhaskar, M. 2012. Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family. Bioinformation 8(12): 543.

Lensink, M.F., Méndez, R. & Wodak, S.J. 2007. Docking and scoring protein complexes: CAPRI 3rd edition. Proteins: Structure, Function, and Bioinformatics 69(4): 704-718.

Lim, G.Y., Tam, W.W., Lu, Y., Ho, C.S., Zhang, M.W. & Ho, R.C. 2018. Prevalence of depression in the community from 30 countries between 1994 and 2014. Scientific Reports 8(1): 1-10.

McKinney, M.K. & Cravatt, B.F. 2005. Structure and function of fatty acid amide hydrolase.  Annual Review of Biochemistry 74: 411-432.

McKinney, M.K. & Cravatt, B.F. 2003. Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase. Journal of Biological Chemistry 278(39): 37393-37399.

Melo de Carvalho, I. 2015. Neuropeptides in stress reactivity: Role of enkephalin in response to chronic stress. PhD Dissertation. Bonn: Rheinische Friedrich Wilhems University (Unpublished).

Micale, V. & Drago, F. 2018. Endocannabinoid system, stress and HPA axis. European Journal of Pharmacology 834: 230-239.

Micale, V., Tabiova, K., Kucerova, J. & Drago, F. 2015. Role of the endocannabinoid system in depression: From preclinical to clinical evidence. In Cannabinoid Modulation of Emotion, Memory, and Motivation.  New York: Springer. pp. 97-129.

Micale, V., Mazzola, C. & Drago, F. 2007. Endocannabinoids and neurodegenerative diseases.  Pharmacological Research 56(5): 382-392.

Mileni, M., Kamtekar, S., Wood, D.C., Benson, T.E., Cravatt, B.F. & Stevens, R.C. 2010. Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597: discovery of a deacylating water molecule and insight into enzyme inactivation. Journal of Molecular Biology 400(4): 743-754.

Mileni, M., Johnson, D.S., Wang, Z., Everdeen, D.S., Liimatta, M., Pabst, B., Bhattacharya, K., Nugent, R.A., Kamtekar, S. & Cravatt, B.F. 2008. Structure-guided inhibitor design for human FAAH by interspecies active site conversion. Proceedings of the National Academy of Sciences 105(35): 12820-12824.

Montanari, S., Scalvini, L., Bartolini, M., Belluti, F., Gobbi, S., Andrisano, V., Ligresti, A., Di Marzo, V., Rivara, S. & Mor, M. 2016. Fatty acid amide hydrolase (FAAH), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE): Networked targets for the development of carbamates as potential anti-Alzheimer’s disease agents. Journal of Medicinal Chemistry 59(13): 6387-6406.

Morgese, M.G., Schiavone, S. & Trabace, L. 2017. Emerging role of amyloid beta in stress response: Implication for depression and diabetes. European Journal of Pharmacology 817: 22-29.

Myllymäki, M.J., Käsnänen, H., Kataja, A.O., Lahtela-Kakkonen, M., Saario, S.M., Poso, A. & Koskinen, A.M.P. 2009. Chiral 3-(4, 5-dihydrooxazol-2-yl) phenyl alkylcarbamates as novel FAAH inhibitors: Insight into FAAH enantioselectivity by molecular docking and interaction fields. European Journal of Medicinal Chemistry 44(10): 4179-4191.

Pan, M., Han, H., Zhong, C. & Geng, Q. 2012. Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in H19-7 neural cell line. The Journal of Nutrition, Health & Aging 16(4): 389-394.

Parasuraman, S., Raveendran, R. & Kesavan, R. 2010. Blood sample collection in small laboratory animals. Journal of Pharmacology & Pharmacotherapeutics 1(2): 87.

Pflüger-Müller, B., Oo, J.A., Heering, J., Warwick, T., Proschak, E., Günther, S., Looso, M., Rezende, F., Fork, C. & Geisslinger, G. 2020. The endocannabinoid anandamide has an anti-inflammatory effect on CCL2 expression in vascular smooth muscle cells. Basic Research in Cardiology 115(3): 1-16.

Prendergast, B.J., Onishi, K.G. & Zucker, I. 2014. Female mice liberated for inclusion in neuroscience and biomedical research. Neuroscience & Biobehavioral Reviews 40: 1-5.

Ren, S-Y., Wang, Z-Z., Zhang, Y. & Chen, N-H. 2020. Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases - Focusing on FAAH/MAGL inhibitors. Acta Pharmacologica Sinica 41(10): 1263-1271.

Ronis, M.J., Mercer, K.E., Shankar, K., Pulliam, C., Pedersen, K., Ingelman-Sundberg, M., Friso, S., Samuelson, D., Del Valle, L. & Taylor, C. 2020. Potential role of gut microbiota, the proto-oncogene PIKE (Agap2) and cytochrome P450 CYP2W1 in promotion of liver cancer by alcoholic and nonalcoholic fatty liver disease and protection by dietary soy protein. Chemico-Biological Interactions 325: 109131.

Rosenzweig-Lipson, S., Beyer, C.E., Hughes, Z.A., Khawaja, X., Rajarao, S.J., Malberg, J.E., Rahman, Z., Ring, R.H. & Schechter, L.E. 2007. Differentiating antidepressants of the future: Efficacy and safety. Pharmacology & Therapeutics 113(1): 134-153.

Schildkraut, J.J. 1965. The catecholamine hypothesis of affective disorders: A review of supporting evidence. American Journal of Psychiatry 122(5): 509-522.

Seillier, A., Aguilar, D.D. & Giuffrida, A. 2014. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184. Pharmacology Biochemistry and Behavior 124: 153-159.

Śliwa, L. & Macura, B. 2005. Evaluation of cell membrane integrity of spermatozoa by hypoosmotic swelling test–“water test” in mice after intraperitoneal Daidzein administration. Archives of Andrology 51(6): 443-448.

Steiner, M.A. & Wotjak, C.T. 2008. Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Progress in Brain Research 170: 397-432.

Sun, J-P. & Qian, K. 2011. Effect of Daidzein on behavior and brain-derived neurotrophic factor of hippocampus in rats with chronic stress depression. Herald of Medicine 4.

Thors, L., Burston, J.J., Alter, B.J., McKinney, M.K., Cravatt, B.F., Ross, R.A., Pertwee, R.G., Gereau 4th, R.W., Wiley, J.L. & Fowler, C.J. 2010. Biochanin A, a naturally occurring inhibitor of fatty acid amide hydrolase. British Journal of Pharmacology 160(3): 549-560.

Thors, L., Eriksson, J. & Fowler, C.J. 2007. Inhibition of the cellular uptake of anandamide by genistein and its analogue daidzein in cells with different levels of fatty acid amide hydrolase‐driven uptake. British Journal of Pharmacology 152(5): 744-750.

Toczek, M. & Malinowska, B. 2018. Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sciences 204: 20-45.

Uddin, Md. & Kabir, Md. 2019. Emerging signal regulating potential of genistein against Alzheimer’s disease: A promising molecule of interest. Frontiers in Cell and Developmental Biology 7: 197.

Vázquez-Palacios, G., Bonilla-Jaime, H. & Velázquez-Moctezuma, J. 2005. Antidepressant effects of nicotine and fluoxetine in an animal model of depression induced by neonatal treatment with clomipramine. Progress in Neuro-Psychopharmacology and Biological Psychiatry 29(1): 39-46.

Vinod, K.Y. & Hungund, B.L. 2006. Role of the endocannabinoid system in depression and suicide. Trends in Pharmacological Sciences 27(10): 539-545.

Wang, H., Xin, M.A., Bai, Y. & Zhang, X. 2003. Relationship between vasodilatation effect of daidzein and vascular endothelium. Chinese Pharmacological Bulletin 8.

Wei, J., Yang, F., Gong, C., Shi, X. & Wang, G. 2019. Protective effect of daidzein against streptozotocin‐induced Alzheimer's disease via improving cognitive dysfunction and oxidative stress in rat model. Journal of Biochemical and Molecular Toxicology 33(6): e22319.

Wilson, R.I. & Nicoll, R.A. 2002. Endocannabinoid signaling in the brain. Science 296(5568): 678-682.

Wu, Q., Wang, M., Chen, W., Wang, K. & Wang, Y. 2021. Daidzein exerts neuroprotective activity against MPTP‐induced Parkinson's disease in experimental mice and lipopolysaccharide‐induced BV2 microglial cells. Journal of Biochemical and Molecular Toxicology 36(2): e22949.

Yin, A-Q., Wang, F. & Zhang, X. 2019. Integrating endocannabinoid signaling in the regulation of anxiety and depression. Acta Pharmacologica Sinica 40(3): 336-341.

Zeng, S., Tai, F., Zhai, P., Yuan, A., Jia, R. & Zhang, X. 2010. Effect of daidzein on anxiety, social behavior and spatial learning in male Balb/cJ mice. Pharmacology Biochemistry and Behavior 96(1): 16-23.

Zhang, J., Hao, Q-Q., Liu, X., Jing, Z., Jia, W-Q., Wang, S-Q., Xu, W-R., Cheng, X-C. & Wang, R-L. 2017. Molecular docking, 3D-QSAR and structural optimization on imidazo-pyridine derivatives dually targeting AT1 and PPARγ. Oncotarget 8(15): 25612.

Zou, S. & Kumar, U. 2018. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. International Journal of Molecular Sciences 19(3): 833.

 

*Corresponding author; email: abdulmannan_ka@yahoo.com 

 

 

 

 

 

previous