Sains Malaysiana 51(10)(2022):
3437-3448
http://doi.org/10.17576/jsm-2022-5110-26
Modeling
the Incomes of the Upper-Class Group in Malaysia using New Pareto-Type
Distribution
(Pemodelan Pendapatan Isi Rumah Kelas Atas di Malaysia menggunakan Taburan Pareto Jenis Baharu)
ANIS SYAZWANI ABD RAOF1, MOHD AZMI HARON1,*, MUHAMMAD ASLAM MOHD SAFARI2 & ZAILAN SIRI1
1Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
2Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
Received: 11 September
2021/Accepted: 23 May 2022
Abstract
The new Pareto-type distribution has been previously introduced as an
alternative to the conventional Pareto distribution in modeling income
distribution. It is claimed to provide better flexibility for mathematical
simplicity of probability functions and has a more straightforward mathematical
form. In this study, the new Pareto-type distribution is used to model the
income of the Malaysian upper-class group. The threshold is determined using
the fixed proportion technique and the maximum likelihood estimator method is
used to estimate the shape parameter. Then, the goodness-of-fit of the fitted
new Pareto model is measured using the coefficient of determination, R2 and Kolmogorov–Smirnov
statistics. We also measure the income inequality among the Malaysian top
income earners using the Lorenz curve, Gini and Theil indices based on the
fitted new Pareto model. Finally, the new Pareto distribution is compared to
alternative distributions to analyze which model can give the best fit for the
data. Our analysis shows that the Pareto type-1 and the new Pareto models are
well fitted to the top income data for all years
considered. However, the new Pareto model provides better flexibility which
covering more incomes in the upper tail of the distribution than the Pareto
type-1 model.
Keywords: Gini index; income inequality; Lorenz
curve; Pareto model; Theil index
Abstrak
Taburan Pareto baharu telah diperkenalkan sebagai alternatif kepada taburan Pareto konvensional dalam permodelan taburan pendapatan. Kelebihan menggunakan taburan Pareto baharu dapat dilihat dari segi bentuk fungsinya yang mudah dan lebih fleksibel dalam memodelkan data. Dalam kajian ini, taburan Pareto baharu digunakan untuk memodelkan data pendapatan isi rumah kelas atas di Malaysia. Anggaran nilai ambang dan nilai parameter bentuk bagi taburan Pareto baharu, masing-masing ditentukan menggunakan teknik pernisbahan tetap dan kaedah anggaran kebolehjadian maksimum. Seterusnya, kebagusan penyuaian taburan Pareto baharu terhadap data pendapatan kelas atas dinilai menggunakan pekali penentuan, R2 dan statistik Kolmogorov–Smirnov. Kajian ini juga mengukur ketaksamaan pendapatan antara golongan atas menggunakan keluk Lorenz, indeks Gini dan indeks Theil berdasarkan taburan Pareto baharu. Akhir sekali, perbandingan antara taburan Pareto baharu dan pelbagai taburan lain dilakukan bagi mengenal pasti taburan yang mampu memberikan penyuaian terbaik dalam menerangkan data pendapatan kelas atas. Hasil kajian mendapati kedua-dua taburan Pareto baharu dan Pareto jenis-1 mampu menerangkan data pendapatan kelas atas. Namun, taburan Pareto baharu memberikan kefleksibelan yang lebih baik dan taburan ini mampu untuk menerangkan data pendapatan yang lebih banyak berbanding taburan Pareto jenis-1.
Kata kunci: Indeks Gini; indeks Theil; keluk Lorenz; ketaksamaan pendapatan; model Pareto
REFERENCES
Abdul
Majid, M.H. & Ibrahim, K. 2021. Composite pareto distributions for
modelling household income distribution in Malaysia. Sains Malaysiana 50(7): 2047-2058. https://doi.org/10.17576/jsm-2021-5007-19
Arcagni,
A. & Porro, F. 2014. The graphical representation of inequality. Revista
Colombiana de Estadística 37(2Spe): 419.
https://doi.org/10.15446/rce.v37n2spe.47947
Bahari,
Z., Mohd, S. & Hamat, A.F.C. 2015. Relationship between poverty and
inequality: A case study of Bumiputera household in the northern states of
Malaysia. Proceedingss of International Conference on Development and Socio
Spatial Inequalities 1: 113-120. http://eprints.usm.my/35089/1/PPIK16.pdf
Banerjee,
A., Yakovenko, V.M. & Matteo, T.D. 2006. A study of the personal income
distribution in Australia. Physica A: Statistical Mechanics and Its
Applications 370(1): 54-59. https://doi.org/10.1016/j.physa.2006.04.023
Bourguignon,
M., Saulo, H. & Fernandez, R.N. 2016. A new pareto-type distribution with
applications in reliability and income data. Physica A: Statistical
Mechanics and Its Applications 457: 166-175.
https://doi.org/10.1016/j.physa.2016.03.043
Brzezinski,
M. 2014. Do wealth distributions follow power laws? Evidence from ‘Rich Lists’. Physica A: Statistical Mechanics and Its Applications 406: 155-162.
https://doi.org/10.1016/j.physa.2014.03.052
Burden,
R.L. & Faires, J.D. 2011. Numerical Analysis. Brooks/Cole, Cengage Learning.
Chakravarty,
S.R. & Sarkar, P. 2020. New perspectives on the Gini and Bonferroni indices
of inequality. Berlin, Heidelberg: Springer doi:
https://doi.org/10.1007/s00355-021-01311-4
Charpentier,
A. & Flachaire, E. 2019. Pareto
Models for Top Incomes. HAL Archieve Ouverte, Id: hal-02145024
Clauset,
A., Shalizi, C.R. & Newman, M.E.J. 2009. Power-law distributions in
empirical data. SIAM Review 51(4): 661-703.
https://doi.org/10.1137/070710111
Clementi,
F. & Gallegati, M. 2005. Power law tails in the Italian personal income
distribution. Physica A: Statistical Mechanics and Its Applications 350
(2-4): 427-438. https://doi.org/10.1016/j.physa.2004.11.038
Cowell,
F.A. 2003. Theil, inequality and the structure of income distribution. Distributional
Analysis Research Programme 67(May): 1-19.
Csörgo,
M., Gastwirth, J.L. & Zitikis, R. 1998. Asymptotic confidence bands for the
Lorenz and Bonferroni curves based on the empirical Lorenz curve. Journal of
Statistical Planning and Inference 74(1): 65-91. https://doi.org/10.1016/s0378-3758(98)00103-7
Department
of Statistics Malaysia. 2020. Laporan
Survei Pendapatan Isi Rumah dan Kemudahan Asas 2019. pp. 3-57.
https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&cat=120&bul_id=TU00TmRhQ1N5TUxHVWN0T2VjbXJYZz09&menu_id=amVoWU54UTl0a21NWmdhMjFMMWcyZz09
Fellman,
J. 2018. Income inequality measures. Theoretical Economics Letters 8(3):
557-574. https://doi.org/10.4236/tel.2018.83039.
Figueira,
F.C., Moura, N.J. & Ribeiro, M.B. 2011. The Gompertz-Pareto income
distribution. Physica A: Statistical Mechanics and Its Applications 390(4): 689-698. https://doi.org/10.1016/j.physa.2010.10.014
Giorgi,
G.M. & Crescenzi, M. 2001. A proposal of poverty measures based on the
Bonferroni Inequality Index. Metron 59(3-4): 3-16.
Hernández-Ramírez,
E., Castillo-Mussot, M.D. & Hernández-Casildo, J. 2021. World per capita
gross domestic product measured nominally and across countries with purchasing
power parity: Stretched exponential or Boltzmann–Gibbs distribution? Physica
A: Statistical Mechanics and Its Applications 568: 125690.
https://doi.org/10.1016/j.physa.2020.125690
Islam,
R., Ghani, A.B.A., Abidin, I.Z. & Rayaiappan, J.M. 2017. Impact on poverty
and income inequality in Malaysia’s economic growth. Problems and
Perspectives in Management 15(1): 55-62.
https://doi.org/10.21511/ppm.15(1).2017.05
Kusnic,
M.W. & Vanzo, J. 1980. Income inequality and the definition of income: The
case of Malaysia. The RAND Corporation. https://www.rand.org/content/dam/rand/pubs/reports/2008/R2416.pdf
Law,
S. & Tan, H. 2009. The role of financial development on income inequality
in Malaysia. Journal of Economic Development 34(2): 153-168.
http://www.jed.or.kr/full-text/34-2/8.pdf
Masseran,
N., Safari, M.A.M., Lok, C.M. & Hussain, S.I. 2020. Analysis of inequality
in the upper-tail of urban household incomes in Malaysia. AIP Conference Proceedings, 2266(October).
https://doi.org/10.1063/5.0018073
Moura,
N.J. & Ribeiro, M.B. 2009. Evidence for the Gompertz curve in the income
distribution of Brazil 1978-2005. European Physical Journal B 67(1):
101-120. https://doi.org/10.1140/epjb/e2008-00469-1.
Oancea,
B., Pirjol, D. & Andrei, T. 2018. A Pareto upper tail for capital income
distribution. Physica A: Statistical
Mechanics and Its Applications 492: 403-417. https://doi.org/10.1016/j.physa.2017.09.034
Pundir,
S., Arora, S. & Jain, K. 2005. Bonferroni curve and the related statistical
inference. Statistics and Probability Letters 75(2): 140-150.
https://doi.org/10.1016/j.spl.2005.05.024.
Rashid,
N.K.A., Rahizal, N.A. & Possumah, B.T. 2020. Does income difference cause
different household expenditure consumption? International Journal of Innovation,
Creativity and Change 12(12): 1314-1340.
Razak,
F.A. & Shahabuddin, F.A. 2018. Malaysian household income distribution: A
fractal point of view. Sains Malaysiana 47(9): 2187-2194.
Raqab,
M.Z., Alkhalfan, L.A., Bdair, O.M. & Balakrishnan, N. 2019. Maximum
likelihood prediction of records from 3-parameter Weibull distribution and some
approximations. Journal of Computational and Applied Mathematics 356:
118-132. https://doi.org/10.1016/j.cam.2019.02.006
Safari,
M.A.M., Masseran, N., Ibrahim, K. & Hussain, S.I. 2021. Measuring income
inequality: A robust semi-parametric approach. Physica A: Statistical
Mechanics and Its Applications 562: 125359.
https://doi.org/10.1016/j.physa.2020.125359
Safari,
M.A.M., Masseran, N., Ibrahim, K. & Al-Dhurafi, N.A. 2020. The power-law
distribution for the income of poor households. Physica A: Statistical
Mechanics and Its Applications 557: 124893.
https://doi.org/10.1016/j.physa.2020.124893
Safari,
M.A.M., Masseran, N. & Ibrahim, K. 2018a. A robust semi-parametric approach
for measuring income inequality in Malaysia. Physica A: Statistical
Mechanics and Its Applications 512: 1-13.
https://doi.org/10.1016/j.physa.2018.08.029
Safari,
M.A.M., Masseran, N. & Ibrahim, K. 2018b. Optimal threshold for Pareto tail
modelling in the presence of outliers. Physica A: Statistical Mechanics and
Its Applications 509: 169-180. https://doi.org/10.1016/j.physa.2018.06.007
Sarabia,
J.M., Jordá, V. & Prieto, F. 2019. On a new Pareto-type distribution with
applications in the study of income inequality and risk analysis. Physica A:
Statistical Mechanics and Its Applications 527: 121277.
https://doi.org/10.1016/j.physa.2019.121277.
Shakil,
N.S.M., Mohd, S., Bahari, Z. & Hamat, A.F.C. 2015. Patterns of income
distribution in the northern states of Malaysia: A life cycle approach. Proceedingss
of International Conference on Development and Socio Spatial Inequalities 1980: 128-134.
*Corresponding author; email: azmiharon@um.edu.my
|