Sains Malaysiana 51(10)(2022): 3449-3461

http://doi.org/10.17576/jsm-2022-5110-27

 

Taburan Parasit Anura dan Indeks Kualiti Air di Kawasan Tasik dan Tanah Bencah Putrajaya

(Distribution of Anuran Parasite and Water Quality Indices at Putrajaya Lake and Wetland)

 

HANI KARTINI AGUSTAR1,*, AMATUL HAMIZAH ALI2, NORHAYATI AHMAD3 & MUHAMMAD ZULFADHLI NASIRUDDIN LIM1

 

1Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received:13 March 2022/Accepted: 25 June 2022

 

Abstrak

Populasi anura (katak) di sesuatu ekosistem boleh menjadi penunjuk biologi bagi tahap kebersihan. Populasi yang rendah atau kadar kematian anura yang tinggi di sesuatu persekitaran menunjukkan ekosistem kawasan tersebut adalah tidak stabil, contohnya akibat pencemaran air atau kadar jangkitan parasit yang tinggi. Objektif kajian ini adalah untuk menentukan kepelbagaian spesies anura, mengenal pasti taburan parasit yang menjangkiti anura di kawasan tasik dan Tanah Bencah Putrajaya dan menentukan hubungan antara indeks kualiti air dengan taburan parasit dan anura. Sebanyak 74 ekor katak telah ditangkap sepanjang tempoh persampelan yang tergolong daripada lima famili dan enam spesies yang berbeza. Indeks kepelbagaian Shannon menunjukkan stesen LE, UN, UW, P.7 dan P.10 mempunyai nilai indeks kepelbagaian iaitu 1˗3 bermaksud kepelbagaian spesies anura adalah sederhana. Sebanyak 2437 ekor parasit telah ditemui pada semua 74 ekor katak yang telah dibedah dalam kajian ini. Anggaran 86.5% katak di kawasan Putrajaya telah dijangkiti parasit. Status indeks kualiti air bagi kesemua stesen Putrajaya adalah bersih hingga sederhana bersih (kelas II hingga III). Ujian Kruskal-Wallis mendapati bahawa taburan parasit pada anura di setiap stesen UE, UW, UN, LE, CW, P.7 dan P.10 adalah tidak signifikan (X² =9.28; df=6; p>0.05). Ini bermaksud tiada perbezaan signifikan antara taburan parasit pada anura di setiap kawasan dan jangkitan parasit ini adalah tidak dipengaruhi oleh indeks kualiti air di sesuatu stesen kajian.

 

Kata kunci: Amfibia; anura; indeks kualiti air; protozoa; taburan parasit; Tanah Bencah Putrajaya; tasik Putrajaya

 

Abstract

The anuran population in an ecosystem is a good indicator of the cleanliness of the environment. A low anuran population or a high anuran mortality rate in an environment indicates that the ecosystem of the surrounding area is unstable, such as exposure to polluted water or high parasite distribution. The objective of this study was to determine the diversity of anuran species, the distribution of anuran parasites in Putrajaya lake and Wetland Putrajaya, and the relationship between water quality index with the distribution of parasites and anuran. A total of 74 frogs were caught during the sampling period, representing five families and six anuran species. According to the Shannon diversity indices, sampling stations LE, UN, UW, P.7, and P.10 had a diversity index value of 1˗3 indicating that the diversity of anuran species was moderate. A total of 2437 parasites were identified from 74 dissected frogs in this study. Parasites have infected an estimated 86.5% of frogs in the Putrajaya area. The water quality index status for all Putrajaya stations is considered clean to moderately clean (Class II to III). The Kruskal-Wallis test showed that the parasite distribution on the anurans at each station UE, UW, UN, LE, CW, P.7, and P.10 was not significant (X² =9.28; df=6; p> 0.05). This means that there is no significant difference in the distribution of parasites on the anurans in each area, and the infection of these parasites is unaffected by the water quality indices at the sampling stations.

 

Keywords: Amphibians; anuran; parasite distribution; protozoa; Putrajaya lake; water quality index; Wetland Putrajaya

 

REFERENCES

Adesuyi, A.A., Nnodu, V.C., Njoku, K.L. & Jolaoso, A. 2015. Nitrate and phosphate pollution in surface water of Nwaja Creek, Port Harcourt, Niger Delta, Nigeria. International Journal of Geology, Agriculture and Environmental Sciences 3(5): 14-20.

Alford, R.A. & Richards, S.J. 1999. Global amphibian declines: A problem in applied ecology. Annual Review of Ecology and Systematics 30(1): 133-165.

APHA. 2005. Standard Methods for the Examination of Water and Waste Water. 21st ed. Washington: American Public Health Association.

Benelli, G. & Mehlhorn, H. 2016. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitology Research 115(5): 1747-1754.

Bernardo-Cravo, A.P., Schmeller, D.S., Chatzinotas, A., Vredenburg, V.T. & Loyau, A. 2020. Environmental factors and host microbiomes shape host–pathogen dynamics. Trends in Parasitology 36(7): 616-633.

Blaustein, A.R., Urbina, J., Snyder, P.W., Reynolds, E., Dang, T., Hoverman, J.T., Han, B., Olson, D.H., Searle, C. & Hambalek, N.M. 2018. Effects of emerging infectious diseases on amphibians: A review of experimental studies. Diversity 10(3): 81.

Ceballos, G., Ehrlich, P.R. & Dirzo, R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences 114(30): E6089-E6096.

Chapman, D. 2021. Water Quality Assessments: A Guide to the Use Of Biota, Sediments and Water in Environmental Monitoring. Boca Raton: CRC Press.

Clare, H. & David, R. 2017. Global Health and Geographical Imaginaries. Taylor & Francis.

Collins, J.P. & Storfer, A. 2003. Global amphibian declines: Sorting the hypotheses. Diversity and Distributions 9(2): 89-98.

DOE. 2008. Malaysia Environmental Quality Report 2007. Department of Environment. Putrajaya: Ministry of Natural Resources and Environment.

Dorcas, M.E., Dorcas, M. & Gibbons, W. 2011. Frogs: The Animal Answer Guide. Baltimore: John Hopkins University Press.

Düşen, S. & Yaka, H. 2014. Helminths of the eastern tree frog, Hyla orientalis, Bedriaga, 1890 (Anura: Hylidae), collected from Denizli province, inner-west Anatolia Region, Turkey. Helminthologia 51(1): 37-45.

Goater, T.M., Goater, C.P. & Esch, G.W. 2014. Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge: Cambridge University Press.

Kadlec, H.R. & Wallace, S. 2008.  Treatment Wetlands. 2nd ed. Boca Raton: CRC Press.     

Hayes, T.B., Falso, P., Gallipeau, S. & Stice, M. 2010. The cause of global amphibian declines: A developmental endocrinologist's perspective. Journal of Experimental Biology 213(6): 921-933.

Hua, J., Wuerthner, V.P., Jones, D.K., Mattes, B., Cothran, R.D., Relyea, R.A. & Hoverman, J.T. 2017. Evolved pesticide tolerance influences susceptibility to parasites in amphibians. Evolutionary Applications 10(8): 802-812.

Inger, R.F. & Stuebing, R.B. 2005. A Field Guide to the Frogs of Borneo. 2nd ed. Natural History Publications (Borneo) in association with Science and Technology Unit.

Kinidi, L., Salleh, S., Wahab, N., Wei, T., Rahman, N. & Atan, M. 2017. Ammoniacal nitrogen uptake by macrophytes with phytoremediation. Research & Reviews: Journal of Engineering and Technology 6(1): 28-35.

Liu, H., Hu, Z., Zhang, J., Ngo, H.H., Guo, W., Liang, S., Fan, J., Lu, S. & Wu, H. 2016.   Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review. Bioresource Technology 214: 797-805.

Mayes, W.M., Batty, L.C., Younger, P.L., Jarvis, A.P., Kõiv, M., Vohla, C. & Mander, U. 2009. Wetland treatment at extremes of pH: A review. Science of the Total Environment 407(13): 3944-3957.

Norhayati, A., Nurul Ain, N., Farhah, I., Isma Nabila, Z., Nur Iddiana, I. & Daicus, B. 2016.   Distribution of anurans in urban wetland at Putrajaya, Malaysia. Malayan Nature Journal 68(3): 63-72.

Rahman, W.A. & Shakinah, Z. 2015. Influence of some environmental parameters on some frog populations and their parasitic fauna. Journal of Veterinary Science and Technology 6(3): 227-231.

Reichenbach-Klinke, H. & Elkan, E. 2013. The Principal Diseases of Lower Vertebrates. Elsevier.

Seelig, B. 2006. Water Quality and Wetland Function in the Northern Prairie Pothole Region. http://region8water.colostate.edu/PDFs/Wave%20Papers/wq1313.pdf

Simon, E., Puky, M., Braun, M. & Tóthmérész, B. 2011. Frogs and toads as biological indicators in environmental assessment. Chapter 7. In Frogs: Biology, Ecology and Uses, edited by Murray, J.L. New York: Nova Science Publishers Inc. hlm. 141-150.

Sures, B., Nachev, M., Selbach, C. & Marcogliese, D.J. 2017. Parasite responses to pollution: What we know and where we go in ‘Environmental Parasitology’. Parasites & Vectors 10(1): 1-19.

Suzanna, E., Satrija, F., Kusrini, M.D. & Fania, D. 2006. Identifikasi nematoda gastrointestinal pada katak Fejervarya cancrivora dan Limnonectes macrodon di Wilayah Kabupaten Bogor, Jawa Barat. Media Konservasi 11(1): 21-25.

Timothy, M.G., Cameron, P.G. & Gerald, W.E. 2014. Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge: Cambridge University Press.

Trocchia, S., Labar, S., Abdel Gawad, F.K., Rabbito, D., Ciarcia, G. & Guerriero, G. 2015. Frog gonad as bio-indicator of Sarno River health. Journal of Scientific and Engineering Research 6(1): 449-456.

 

*Corresponding authoremail: hani_ag@ukm.edu.my

 

 

 

 

 

previous