Sains Malaysiana 51(12)(2022):
3967-3980
http://doi.org/10.17576/jsm-2022-5112-08
Removal of Bisphenol S from Aqueous
Solution using Activated Carbon Derived from Rambutan Peel via Microwave
Irradiation Technique
(Penyingkiran Bisfenol S daripada Larutan Akuas menggunakan Karbon Teraktif Terbitan daripada Kulit Rambutan melalui Teknik Penyinaran Gelombang Mikro)
AZRINA
AZIZ, MOHAMAD FIRDAUS MOHAMAD YUSOP & MOHD AZMIER AHMAD*
School of
Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
Received: 30 March 2022/Accepted:
19 August 2022
Abstract
Bisphenol S (BPS) was introduced to replace Bisphenol A (BPA) in plastic
production. Unfortunately, recent studies have shown that BPS is toxic. This
study explores the conversion of rambutan peel into rambutan peel-based
activated carbon (RPAC) via the economic route of single-stage microwave
irradiation technique at radiation power and radiation time of 440 W and 6 min,
respectively, under CO2 gasification. The resulted RPAC posed BET
surface area of 402.68 m2/g, mesopores surface area of 332.98 m2/g,
total pore volume of 0.23 cm3/g, and average pore diameter of 2.26
nm, which lies in the mesopores region. The surface of RPAC was filled with
various functional groups such as methylene, aliphatic fluoro,
phenol, nitro, and alkyl compounds. Adsorption of BPS onto RPAC achieved
equilibrium faster at lower BPS initial concentration as compared to the higher
ones. Isotherm study found that the Langmuir model suits this adsorption
process the best with a maximum monolayer adsorption capacity of 27.89 mg/g
whereas the kinetic study showed that pseudo-second order (PSO) represented the
kinetic data the best. Intraparticle diffusion plots suggested that the
adsorption process consisted of three regions and each region was controlled by
a different type of diffusion mechanism. Boyd plot confirmed that film
diffusion was responsible for the slowest step in the adsorption process whilst
thermodynamic parameters disclosed that adsorption of BPS onto RPAC was
spontaneous, exothermic, governed by physisorption, and the randomness of the
adsorption process was found to reduce at the solid-liquid interface.
Keywords: Activated carbon;
adsorption process; bisphenol S; Nephelium lappaceum L.;
microwave heating
Abstrak
Bisfenol S (BPS) telah diperkenalkan untuk menggantikan Bisfenol A (BPA) dalam penghasilan plastik. Namun, kajian terkini mendapati BPS juga bersifat toksik. Kajian ini menerokai penghasilan karbon teraktif berasaskan kulit rambutan (RPAC) daripada kulit rambutan melalui proses pemanasan sinaran gelombang mikro satu langkah yang menjimatkan pada kuasa dan masa pengaktifan masing-masing pada 440 W dan 6 minit di bawah aliran karbon dioksida,
CO2. RPAC yang terhasil memiliki luas permukaan BET 402.68 m2/g, luas permukaan liang meso 332.98 m2/g, jumlah isi padu liang 0.23 cm3/g dan purata diameter liang
2.26 nm, yang terletak di dalam julat liang meso. Permukaan RPAC terdapat pelbagai kumpulan berfungsi seperti metilena, fluoro alifatik, fenol, nitro dan sebatian alkil. Penjerapan BPS oleh RPAC mencapai keseimbangan lebih pantas pada kepekatan BPS yang lebih rendah berbanding yang lebih tinggi. Kajian isoterma mendapati proses penjerapan mengikuti model garis sesuhu Langmuir terbaik dengan kapasiti penjerapan 27.89 mg/g manakala kajian kinetik mendapati pseudo tertib kedua mengikuti data kinetik yang terbaik. Plot resapan intrazarah mencadangkan proses penjerapan terbina daripada tiga bahagian dan setiap bahagian dikawal oleh mekanisme resapan yang berbeza. Plot Boyd mengesahkan resapan filem bertanggungjawab sebagai langkah terlambat di dalam proses penjerapan manakala parameter termodinamik mengesahkan penjerapan BPS oleh RPAC berlaku secara spontan, eksotermik, dikawal oleh fisiserapan dan kerawakan proses penjerapan didapati berkurang antara muka pepejal-cecair.
Kata kunci: Bisfenol S; karbon teraktif; Nephelium lappaceum L., pemanasan gelombang mikro; proses penjerapan
REFERENCES
Ahammad, N.A., Yusop,
M.F.M., Mohd Din, A.T. & Ahmad, M.A. 2021. Preparation of Alpinia galanga stem based activated
carbon via single-step microwave irradiation for cationic dye removal. Sains Malaysiana 50(8): 2251-2269.
Ahmad, M.A., Aswareusoff, M., Oladoye, P.O., Adegok,
K.A. & Bell, O.S. 2021a. Optimization and batch studies on adsorption of
Methylene blue dye using pomegranate fruit peel based adsorbent. Chemical Data Collections 32: 100676.
Ahmad, M.A., Hamid, S.R.A., Yusop, M.F.M. & Aziz,
H.A. 2017. Optimization of microwave-assisted durian seed based activated
carbon preparation conditions for methylene blue dye removal. AIP Conference Proceedings 1892: 040019.
Ahmad, M.A., Yusop, M.F.M., Zakaria, R., Karim, J.,
Yahaya, N.K.E.M., Mohamed Yusoff, M.A., Hashim, N.H.F. & Abdullah, N.S.
2021b. Adsorption of methylene blue from aqueous solution by peanut shell based
activated carbon. Materials Today:
Proceedings 47(6): 1246-1251.
Ahmad, M.A., Yusop, M.F.M., Awang, S., Yahaya,
N.K.E.M., Rasyid, M.A. & Hassan, H. 2021c. Carbonization of sludge biomass
of water treatment plant using continuous screw type conveyer pyrolyzer for
methylene blue removal. IOP Conference
Series: Earth and Environmental Science 765: 012112.
Akash, M.S.H., Sabir, S. & Rehman, K. 2020.
Bisphenol A-induced metabolic disorders: From exposure to mechanism of action. Environmental Toxicology and Pharmacology 77: 103373.
Ali, I., Peng, C., Khan, Z.M., Naz, I. & Sultan,
M. 2018. An overview of heavy metal removal from wastewater using magnetotactic
bacteria. Chemical Engineering &
Technology 93: 2817-2832.
An, H., Yu, H., Wei, Y., Liu, F. & Ye, J. 2021.
Disrupted metabolic pathways and potential human diseases induced by bisphenol
S. Environmental Toxicology and
Pharmacology 88: 103751.
Aziz, A., Khan, M.N.N., Yusop, M.F.M., Jaya, M.J.J.,
Jaya, M.A.T. & Ahmad, M.A. 2021. Single-stage microwave-assisted
coconut-shell-based activated carbon for removal of dichlorodiphenyltrichloroethane
(DDT) from aqueous solution: Optimization and batch studies. International Journal of Chemical
Engineering (Special Issue - Advances in Coagulation-Adsorption Processes)
2021: 9331386.
Bahiraei, A. & Behin, J. 2021. Effect of citric
acid and sodium chloride on characteristics of sunflower seed shell-derived
activated carbon. Chemical Engineering
& Technology 44: 1604-1617.
Benmahdi, F., Semra, S., Haddad, D., Mandin, P.,
Kolli, M. & Bouhelassa, M. 2019. Breakthrough curves analysis and statistical
design of phenol adsorption on activated carbon. Chemical Engineering & Technology 42: 355-369.
Boopathy, R., Karthikeyan, S., Mandal, A.B. &
Sekaran, G. 2013. Adsorption of ammonium ion by coconut shell-activated carbon
from aqueous solution: Kinetic, isotherm, and thermodynamic studies. Environ. Sci. Pollut. Res. Int. 20:
533-542.
Choi, J.H., Jang, J.T., Yun, S.H., Jo, W.H., Lim,
S.S., Park, J.H., Chun, I.S., Lee, J-H. & Yoon, Y.I. 2020. Efficient
removal of ammonia by hierarchically porous carbons from a CO2 capture process. Chemical Engineering
& Technology 43: 2031-2040.
El Maataoui, Y., El M’rabet, M., Maaroufi, A. &
Dahchour, A. 2019. Spiramycin adsorption behavior on activated bentonite,
activated carbon and natural phosphate in aqueous solution. Environmental Science and Pollution Research 26: 15953-15972.
Fahim Chyad, T., Fahim Chyad Al-Hamadani, R., Ageel
Hammood, Z. & Abd Ali, G. 2021. Removal of zinc (II) ions from industrial
wastewater by adsorption on to activated carbon produced from pine cone. Materials Today: Proceedings https://doi.org/10.1016/j.matpr.2021.07.016.
Frankowski, R., Płatkiewicz, J., Stanisz, E.,
Grześkowiak, T. & Zgoła-Grześkowiak, A. 2021. Biodegradation
and photo-fenton degradation of bisphenol A, bisphenol S and fluconazole in
water. Environmental Pollution 289:
117947.
Freundlich, H.M.F. 1906. Over the adsorption in
solution. The Journal of Physical
Chemistry 57: 385-471.
Hernández-Hernández, C., Aguilar, C.N.,
Rodríguez-Herrera, R., Flores-Gallegos, A.C., Morlett-Chávez, J., Govea-Salas,
M. & Ascacio-Valdés, J.A. 2019. Rambutan (Nephelium lappaceum L.): Nutritional and functional properties. Trends in Food Science & Technology 85: 201-210.
Ho, Y.S. & Mckay, G. 1999. Pseudo-second order
model for sorption processes. Process
Biochemistry 34: 451-465.
Islam, M.A., Sabar, S., Benhouria, A., Khanday, W.A.,
Asif, M. & Hameed, B.H. 2017. Nanoporous activated carbon prepared from
karanj (Pongamia pinnata) fruit hulls
for methylene blue adsorption. Journal of
the Taiwan Institute of Chemical Engineers 74: 96-104.
Kim, J.I., Lee, Y.A., Shin, C.H., Hong, Y-C., Kim,
B-N. & Lim, Y-H. 2022. Association of bisphenol A, bisphenol F, and
bisphenol S with ADHD symptoms in children. Environment
International 161: 107093.
Koble, R.A. & Corrigan, T.E. 1952. Adsorption
isotherms for pure hydrocarbons. Industrial
& Engineering Chemistry 44: 383-387.
Lagergren, S. & Svenska, K. 1898. About the theory
of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24: 1-39.
Langmuir, I. 1918. The adsorption of gases on plane
surfaces of glass, mica and platinum. Journal
of the American Chemical Society 40: 1361-1403.
Lima, E.C., Hosseini-Bandegharaei, A., Moreno-Piraján,
J.C. & Anastopoulos, I. 2019. A critical review of the estimation of the
thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium
constant in the Van't Hoof equation for calculation of thermodynamic parameters
of adsorption. Journal of Molecular
Liquids 273: 425-434.
Lv, Y., Ma, J., Liu, K., Jiang, Y., Yang, G., Liu, Y.,
Lin, C., Ye, X., Shi, Y., Liu, M. & Chen, L. 2021. Rapid elimination of
trace bisphenol pollutants with porous β-cyclodextrin modified cellulose
nanofibrous membrane in water: Adsorption behavior and mechanism. Journal of Hazardous Materials 403:
123666.
Marrakchi, F., Hameed, B.H. & Bouaziz, M. 2020.
Mesoporous and high-surface-area activated carbon from defatted olive cake
by-products of olive mills for the adsorption kinetics and isotherm of methylene
blue and acid blue 29. Journal of
Environmental Chemical Engineering 8: 104199.
Mathangi, J.B., Kalavathy, M.H. & Miranda, L.R.
2021. Pore formation mechanism and sorption studies using activated carbon from Gleditsia triacanthos. Chemical Engineering & Technology 44: 892-900.
Mohammed, E., Kamel, M., El Iraqi, K., Tawfik, A.M.,
Khattab, M.S. & Elsabagh, M. 2020. Zingiber
officinale and Glycyrrhiza glabra, individually or in combination, reduce heavy metal accumulation and improve
growth performance and immune status in Nile
tilapia, Oreochromis niloticus. Chemical Engineering & Technology 51:
1933-1941.
Moral-Rodríguez, A.I., Leyva-Ramos, R., Ania, C.O.,
Ocampo-Pérez, R., Isaacs-Páez, E.D., Carrales-Alvarado, D.H. & Parra, J.B.
2019. Tailoring the textural properties of an activated carbon for enhancing
its adsorption capacity towards diclofenac from aqueous solution. Environmental Science and Pollution Research 26: 6141-6152.
Mozaffari Majd, M., Kordzadeh-Kermani, V., Ghalandari,
V., Askari, A. & Sillanpää, M. 2022. Adsorption isotherm models: A
comprehensive and systematic review (2010-2020). Science of The Total Environment 812: 151334.
Osman, A.I., Blewitt, J., Abu-Dahrieh, J.K., Farrell,
C., Al-Muhtaseb, A.A.H., Harrison, J. & Rooney, D.W. 2019. Production and
characterisation of activated carbon and carbon nanotubes from potato peel
waste and their application in heavy metal removal. Environmental Science and Pollution Research 26: 37228-37241.
Othman, F.E.C., Yusof, N. & Ismail, A.F. 2020.
Activated-carbon nanofibers/graphene nanocomposites and their adsorption
performance towards carbon dioxide. Chemical
Engineering & Technology 43: 2023-2030.
Rakariyatham, K., Zhou, D., Rakariyatham, N. &
Shahidi, F. 2020. Sapindaceae (Dimocarpus
longan and Nephelium lappaceum)
seed and peel by-products: Potential sources for phenolic compounds and use as
functional ingredients in food and health applications. Journal of Functional Foods 67: 103846.
Ramezanipour Penchah, H., Ghaemi, A. & Jafari, F.
2022. Piperazine-modified activated carbon as a novel adsorbent for CO2 capture: Modeling and characterization. Environmental
Science and Pollution Research 29: 5134-5143.
Rezg, R., Abot, A., Mornagui, B. & Knauf, C. 2019.
Bisphenol S exposure affects gene expression related to intestinal glucose
absorption and glucose metabolism in mice. Environmental
Science and Pollution Research 26: 3636-3642.
Soleimanpour, A., Farsi, M., Keshavarz, P. &
Zeinali, S. 2021. Modification of activated carbon by MIL-53(Al) MOF to develop
a composite framework adsorbent for CO2 capturing. Environmental Science and Pollution Research 28: 37929-37939.
Song, P., Fan, K., Tian, X. & Wen, J. 2019.
Bisphenol S (BPS) triggers the migration of human non-small cell lung cancer
cells via upregulation of TGF-β. Toxicology
in Vitro 54: 224-231.
Tabiś, B., Boroń, D. & Bizon, K. 2020.
Biological water treatment by a hybrid fluidized-bed bioreactor: Theoretical
study. Chemical Engineering &
Technology 43: 983-994.
Temkin, M.I. & Pyzhev, V. 1940. Kinetics and
ammonia synthesis on promoted iron catalyst Acta
Physiochimica USSR 12: 327-356.
Tharaneedhar, V., Senthil Kumar, P., Saravanan, A.,
Ravikumar, C. & Jaikumar, V. 2017. Prediction and interpretation of
adsorption parameters for the sequestration of methylene blue dye from aqueous
solution using microwave assisted corncob activated carbon. Sustainable Materials and Technologies 11: 1-11.
Torgbo, S., Sukatta, U., Kamonpatana, P. & Sukyai,
P. 2022. Ohmic heating extraction and characterization of rambutan (Nephelium lappaceum L.) peel extract
with enhanced antioxidant and antifungal activity as a bioactive and functional
ingredient in white bread preparation. Food
Chemistry 382: 132332.
Yang, X., Liu, Y., Hu, S., Yu, F., He, Z., Zeng, G.,
Feng, Z. & Sengupta, A. 2021. Construction of Fe3O4@MXene
composite nanofiltration membrane for heavy metal ions removal from wastewater. Chemical Engineering & Technology 32: 1000-1010.
Yang, X., Zhang, S., Liu, L. & Ju, M. 2020. Study
on the long-term effects of DOM on the adsorption of BPS by biochar. Chemosphere 242: 125165.
Yao, L., Esmaeili, H., Haghani, M. & Roco-Videla,
A. 2021. Activated carbon/bentonite/Fe3O4 as a novel
nanobiocomposite for high removal of Cr (VI) ions. Chemical Engineering & Technology 44: 1908-1918.
Yusop, M.F.M., Ahmad, M.A., Rosli, N.A., Gonawan, F.N.
& Abdullah, S.J. 2021. Scavenging malachite green dye from aqueous solution
using durian peel based activated carbon. Malaysian
Journal of Fundamental and Applied Sciences 17: 95-103.
Yusop, M.F.M., Aziz, A. & Ahmad, M.A. 2022a.
Conversion of teak wood waste into microwave-irradiated activated carbon for
cationic methylene blue dye removal: Optimization and batch studies. Arabian Journal of Chemistry 15(9): 104081.
Yusop, M.F.M., Jaya, E.M.J. & Ahmad, M.A. 2022b.
Single-stage microwave assisted coconut shell based activated carbon for
removal of Zn(II) ions from aqueous solution - Optimization and batch studies. Arabian Journal of Chemistry 15(8):
104011.
Yusop, M.F.M., Jaya, E.M.J., Din, A.T.M., Bello, O.S.
& Ahmad, M.A. 2022c. Single-stage optimized microwave-induced activated
carbon from coconut shell for cadmium adsorption. Chemical Engineering and Technology 45(11): 1943-1951.
Zhang, X-X., Xiao, P., Chen, G-J., Sun, C-Y. &
Yang, L-Y. 2018. Separation of methane and carbon dioxide gas mixtures using
activated carbon modified with 2-methylimidazole. Chemical Engineering & Technology 41: 1818-1825.
*Corresponding author; email: chazmier@usm.my
|