Sains Malaysiana 51(3)(2022): 657-677

http://doi.org/10.17576/jsm-2022-5103-03

 

Curie-point Depths, Geothermal Gradients and Sub-Surface Heat Flow Estimation from Spectral Analysis of High-Resolution Aeromagnetic Data over Gongola Basin and Its Environs, Northeastern Nigeria

(Kedalaman Titik Curie, Kecerunan Geoterma dan Anggaran Aliran Haba Sub-Permukaan daripada Analisis Spektrum Data Aeromagnetik Resolusi Tinggi di Lembangan Gongola dan Sekitarnya, Timur Laut Nigeria)

 

ABUBAKAR YUSUF1,2, LIM HWEE SAN1,* & ISMAIL AHMAD ABIR1

 

1Exploration Geophysics Section, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

  2Department of Geology, Faculty of Science, Gombe State University, P.M.B. 0127, Gombe, Nigeria

 

Received: 20 March 2021/Accepted: 31 July 2021

 

Abstract

Geothermal energy resources have been established globally to be among the sustainable and environmentally harmless means of energy generation. Curie-point depths (CPD), temperature gradients, and heat flow data over the study area were computed using a spectral analysis method in order to have a preliminary view of the geothermal implications (prospect) of the current area. Aeromagnetic data acquired by the Nigerian Geological Survey Agency (NGSA) in the year 2009 was used for the research. The results showed the minimum, maximum, and the average CPD values as 8.18 km, 31.48 km, and 13.0 km, respectively. The minimum, maximum and average thermal gradients obtained were 18.42 °C/km, 70.91 °C/km, and 50.2 °C/km, respectively. The heat flow data obtained ranged from 33.15 mW/m2 to 177.28 mW/m2, with an average value of 110.65 mW/m2. Locations depicting shallow CPDs anomalies (Alkaleri, Darazo, Dukku, Misau, Wuyo, Deba, and Tula), also showed conformity with high heat flow areas. As such, they are regarded as areas of promising geothermal prospects and are recommended for further detailed investigation. Locations depicting a high magnetic susceptibility contrast from a generated analytic signal map, as well as high temperature gradients, high heat flow, and shallow CPDs are attributed to crustal thinning along the sedimentary basin and magmatic intrusions along basement areas, respectively. The magnetic depth to the basement calculated for the study area using the source parameter imaging (SPI) method ranges from 0.610 km to 3.055 km. The present study has provided an insight on preliminary information, regarding new areas of possible geothermal prospects for further detailed investigation.

 

Keywords: Aeromagnetic; Curie-point depth; heat flow; spectral analysis; temperature gradients

 

Abstrak

Sumber tenaga geoterma telah ditubuhkan secara global untuk menjadi antara kaedah penjanaan tenaga yang mampan dan tidak berbahaya kepada alam sekitar. Kedalaman titik Curie (CPD), kecerunan suhu dan data aliran haba ke atas kawasan kajian telah dihitung menggunakan kaedah analisis spektrum untuk mendapatkan pandangan awal tentang implikasi (prospek) geoterma bagi kawasan semasa. Data aeromagnet yang diperoleh oleh Agensi Kajian Geologi Nigeria (NGSA) pada tahun 2009 digunakan untuk penyelidikan. Keputusan menunjukkan nilai CPD minimum, maksimum dan purata masing-masing 8.18 km, 31.48 km dan 13.0 km. Kecerunan terma minimum, maksimum dan purata yang diperoleh ialah 18.42 °C/km, 70.91 °C/km dan 50.2 °C/km, masing-masing. Data aliran haba yang diperoleh adalah antara 33.15 mW/m2 hingga 177.28 mW/m2, dengan nilai purata 110.65 mW/m2. Lokasi yang menggambarkan anomali CPD cetek (Alkaleri, Darazo, Dukku, Misau, Wuyo, Deba dan Tula), juga menunjukkan pematuhan dengan kawasan aliran haba yang tinggi. Oleh itu, ia dianggap sebagai kawasan prospek geoterma yang menjanjikan dan disyorkan untuk kajian terperinci lanjut. Lokasi yang menggambarkan kontras kerentanan magnet yang tinggi daripada peta isyarat analitik yang dijana, serta kecerunan suhu tinggi, aliran haba yang tinggi dan CPD cetek dikaitkan dengan penipisan kerak di sepanjang lembangan sedimen dan pencerobohan magmatik di sepanjang kawasan bawah tanah. Kedalaman magnet ke ruang bawah tanah yang dihitung untuk kawasan kajian menggunakan kaedah pengimejan parameter sumber (SPI) berjulat dari 0.610 km hingga 3.055 km. Kajian ini telah memberikan gambaran tentang maklumat awal, mengenai kawasan baharu prospek geoterma untuk kajian terperinci lanjut.

 

Kata kunci: Aeromagnetik; aliran haba; analisis spektrum; kecerunan suhu; kedalaman titik Curie

 

REFERENCES

Abdullahi, B.U., Rai, J.K., Olaitan, O.M. & Musa, Y.A. 2014. A review of the correlation between geology and geothermal energy in Northeastern Nigeria. IOSR Journal of Applied Geology and Geophysics (IOSR-JAGG) 2(3): 74-83.

Abdullahi, M., Singh, U.K. & Roshan, R. 2019. Mapping magnetic lineaments and subsurface basement beneath parts of Lower Benue Trough (LBT), Nigeria: Insights from integrating gravity, magnetic and geologic data. Journal of Earth System Science 128(1): 17.

Abraham, E., Itumoh, O., Chukwu, C. & Rocks, O. 2019. Geothermal energy reconnaissance of Southeastern Nigeria from analysis of aeromagnetic and gravity data. Journal of Pure and Applied Geophysics 176: 1615-1638.

Abdel Zaher, M., Saibi, H., Mansour, K., Khalil, A. & Soliman, M. 2017. Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert, Egypt. Renewable and Sustainable Energy Review 83(Part 2): 3824-3832. http://dx.doi.org/10.1016/j.rser.2017.10.088.

Adepelumi, A.A. & Falade, A.H. 2017. Combined high-resolution aeromagnetic and Radiometric Mapping of uranium mineralization and tectonic settings in Northeastern. Acta Geophys. 65: 1043-1068.

Aboud, E., Salem, A. & Mekkawi, M. 2011. Curie depth map for Sinai Peninsula, Egypt Deduced from the analysis of magnetic data. Tectonophysics 506: 46-54.

Abubakar, M.B. 2006. Biostratigraphy, Palaeo environment and organic geochemistry of the Cretaceous sequences of the Gongola Basin, Upper Benue Trough, Nigeria. PhD. Thesis, Abubakar Tafawa Balewa University, Bauchi, Nigeria (Unpublished). pp. 139-140.

Ajayi, C.O. & Ajakaiye, D.E. 1981. The origin and peculiarities of the Nigerian Benue Trough: Another look from the recent gravity data obtained from the middle Benue. Tectonophysics 80: 285-303.

Bahruddin, N.F.D., Hamza, U. & Jacob, W.Z.W. 2020. Estimation of Earth Structure by satellite gravity analysis of Peninsular Malaysia. Sains Malaysiana 49(7): 1509-1520. http://dx.doi.org/10.17576/jsm-2020-4907-04.

Baioumy, H., Nawawi, M., Wagner, K. & Arifin, M.H. 2014. Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. Journal of Volcanology and Geothermal Research 290: 12-22.

Bello, R., Ofoha, C. & Wehiuzo, N. 2017. Geothermal gradient, Curie point depth and heat flow determination of some parts of lower Benue trough and Anambra basin, Nigeria, using high resolution aeromagnetic data. Phys. Sci. Int. Journal 15(2): 1-11.

Billim, F., Akay, T., Aydemir, A. & Kosaroglu, S. 2015. Curie point depth, heat-flow and radiogenic heats production deduced from spectral analysis of the aeromagnetic data for investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermic 60: 44-57.

Blakely, R.J. 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press.

Correa, R.T., Vidotti, R.M. & Oksum, E. 2016. Curie surface of Borborema Province, Brazil. Tectonophysics 679: 73-87.

Cordell, L. & Grauch, V.J.S. 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, In The Utility of Regional Gravity and Magnetic Anomaly Maps, edited by Hinze, W.J. pp. 181-197.

Dentith, M. 2011. Magnetic methods, airborne. In Encyclopedia of Solid Earth Geophysics, vol 1, edited by Gupta, H.S. Springer, Dordrecht. pp. 761-766.

Dolmaz, M.N., Ustaomer, T., Histarli, Z.M. & Orbay, N. 2005. Curie point depth variations to infer Thermal Structure of the crust at the African-Urasian convergence zone, SW Turkey. Earth Planets Space 57: 373-383.

Dunlop, D.J. & Ozdemir, O. 2001. Beyond Neel’s Theories: Thermal demagnetization of a narrow-band partial thermoremnent magnetizations. Physics of the Earth and Planetary Interiors 126: 43-57.

Elbarbary, S., Abdel Zaher, M., Mesbah, H., El-Shahat, A. & Embaby, A. 2018. Curie point depth, Heat flow and geothermal gradients maps of Egypt deduced from aeromagnetic data. Renewable and Sustainable Energy Reviews 91: 620-629.

Gailer, L.S., Lenat, J.F. & Blakely, R.J. 2016. Depth to Curie temperature or bottom of the magnetic sources in the volcanic zone of la union hot spot. Journal of Volcanology and Geothermal Research 324: 169-178.

Guo, Q. & Wang, Y. 2012. Geochemistry of hot springs in the Tenchong hydrothermal areas, Southwestern China. Journal of Volcanology and Geothermal Research 215-216: 61-73.

Guiraud, M. 1993. Late Jurassic Rifting-Early Cretaceous Rifting and Late Cretaceous Transgressional inversion in the Upper Benue Basin (NE Nigeria). Bulletin Centres Recherché Exploration-Production Elf-Aquitaine 17: 371-383.

Hamidu, I. 2012. The Campanian to Maastrichtian Stratigraphic Succession in the Cretaceous Gongola Basin of North-Eastern Nigeria. Published Ph.D. Thesis, Ahmadu Bello University, Zaria (Unpublished). pp. 41-177.

Jain, S. 1988. Total magnetic field reduction-The pole or equator? A model study. Canadian Journal of Exploration Geophysics 24(2): 185-192.

Jessop, A.M., Hobert, M.A. & Sclater, J.G. 1976. The World heat flow data collection 1975, Geothermal Services of Canada. Geothermal Service 50: 55-77.

Kurowska, E. & Schoeneich, K. 2010. Geothermal Exploration in Nigeria. Proceedings of World    Geothermal Congress-2010, Bali, Indonesia, 25-29th April, 2010.

Lowrie, W. 2007. Fundamentals of Geophysics. 2nd ed. Cambridge: Cambridge University Press. pp. 1-381.

Mono, J.A., Ndougsa-Mbarga, T., Tarek, Y., Ngoh, D.J. & Amougou, O.U.I.O. 2018. Estimation of Curie point depths, geothermal gradients and near-surface heat flow from spectral analysis of aeromagnetic data in the Loum - Minta area (Centre-East Cameroon). Egyptian Journal of Petroleum 27: 1291-1299.

Mohamed, H.S., Abdel Zaher, M., Senosy, M.M., Saibi, H., El Nouby, M. & Fairhead, D. 2015. Correlation of aero gravity and BHT data to develop a geothermal gradient map of northern western desert of Egypt using an artificial neural network. Journal of Pure and Applied Geophysics 172(6): 1585-1597.

Musa, O.K. 2015. Mud volcanoes on the dry land of Nigeria. PhD Dissertation. Submitted to Postgraduate School, Ahmadu Bello University Zaria, Nigeria (Unpublished).

Manea, M. & Manea, V.C. 2011. Curie point depth estimates and correlation with subduction in Mexico. Pure and Applied Geophysics 168: 1489. https://doi.org/10.1007/s00024-0100238-2.

Maden, N. 2010. Curie-point depth from spectral analysis of magnetic data in Erciyes Stratovolcano (Central Turkey). Pure Applied Geophysics 167(3): 349-358.

Nigerian Geological Survey Agency (NGSA). 2009. Geological map sheets. Nigerian Geological Survey Agency, Abuja, Nigeria. pp. 107-174.

Nwankwo, C.N. & Ekine, A.S. 2009. Geothermal gradients in the Chad Basin, Nigeria, from bottom hole temperature logs. International Journal of Physical Sciences 4(12): 777-783.

Nwajide, C.S. 2013. Geology of Nigeria’s Sedimentary Basins. Lagos, Nigeria: CSS Bookshops Ltd. p. 565.

NESREA, 2011. Annual report on hazardous geological activities in Nigeria. p. 256.

Nabighian, M.N. 1984. Toward a three-dimensional-automatic interpretation of potential field data via hilbert transforms - Fundamental relations. Geophysics 49: 780-786.

Nagata, T. 1961. Rock Magnetism. Tokyo, Japan: Maruzen Company Limited. p. 350.

Obande, G.E., Lawal, K.M. & Ahmed, L.A. 2014. Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring north-east Nigeria. Geothermic 50: 85-90.

Obaje, N.G. 2009. Geology and Mineral Resources of Nigeria. Dordtecht Heidelberg London: Springer. p. 218.

Onuoha, K.M. & Ekine, A.S. 1999. Subsurface temperature variation and heat flow in the Anambra Basin, Nigeria. Journal of African Earth Sciences 28(3): 641-652.

Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K. & Tsu, H. 1985. Curie point depths of the island of Kyushu and surrounding area Japan. Geophysics 50(3): 481-489.

Osazuwa, I.B., Ajakaiye, D.E. & Verheijen, P.J.T. 1981. Analysis of the structure of part of the upper Benue rift valley on the basis of new geophysical data. Earth Evolution Sciences 2: 126-133.

Ross, H.E., Blakely, R.J. & Zoback, M.D. 2006. Testing the Curie point depth in California. Geophysics 71(5): 151-159.

Roest, W.R., Verhoef, J. & Pilkington, M. 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1): 116-125. doi: 10.1190/1.1443174.

Saada, S.A. 2016. Curie point depth and heat flow from spectral analysis of aeromagnetic data over the Northern part of Western Desert, Egypt. Journal of Applied Geophysics 134: 11-100.

Saibi, H., Aboud, E. & Gottsman, J. 2015. Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan. Journal of African Earth Sciences 111: 92-99.

Saleh, S., Salk, M. & Pamukcu, O. 2013. Estimating Curie point depth and heat flow map for Northern Red Sea rift of Egypt and its surroundings, from aeromagnetic data. Pure and Applied Geophysics 170: 85-863.

Salako, K.A. 2014. Depth to basement determination using Source Parameter Imaging (SPI) of aeromagnetic data: An application to Upper Benue Trough and Borno Basin, Northeast, Nigeria. Academic Research International 5(3).

Salako, K.A. & Udensi, E.E. 2013. Spectral depth analysis of parts of Benue Trough and Borno Basin, northeast Nigeria, using Aeromagnetic data. International Journal of Science and Research 2(8): 48-55.

Stacey, F.D. 1977. Physics of the Earth. 2nd ed. New York: John Wiley and Sons. p. 414.

Tukur, A., Samaila, N.K., Grimes, S.T., Kariya, I.I. & Chaanda, M.S. 2015. Two members sub-division of the Bima Sandstone, Upper Benue Trough: Based on sedimentological data. Journal of African Earth Sciences 104: 140-158.

Tanaka, A., Okubo, Y. & Matsubayashi, O. 1999. Curie point depth based on spectrum analysis of magnetic anomaly data in East and Southeast Asia. Tectonophysics 306: 461-470.

Thurston, J.B. & Smith, R.S. 1997. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPITM method. Geophysics 62: 807.

Verduzco, B., Fairhead, J.D., Green, C.M. & Mackenzie, C. 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge 23(2): 116-119.

Wang, J. & Li, C.F. 2018. Curie point depths in Northeast China and their geothermal implications for the Song Liao Basin. Journal of Asian Earth Sciences 163: 177-193.

 

*Corresponding author; email: hslim@usm.my

 

 

previous