Sains Malaysiana 51(4)(2022):
1017-1026
http://doi.org/10.17576/jsm-2022-5104-06
Clustering of Fifth
Generation Mutants of Genetically - Improved Kipas Putih Soybean with High Protein Content
(Pengelompokan Mutan Generasi Kelima Kacang Soya Kipas Putih Terubah Suai Genetik dengan Kandungan Protein
Tinggi)
ZUYASNA1,*,
ANDARI RISLIAWATI2 & GUNAWAN1
1Agrotechnology
Study Program, Faculty of Agriculture, Syiah Kuala
University, Jl. T.H.Krueng Kalee No3, Banda Aceh, Indonesia
2Indonesian
Centre for Agricultural Biotechnology and Genetic Resources Research and
Development, Bogor, Indonesia
Received: 28 October 2020/Accepted: 2 September 2021
Abstract
Kipas Putih is one of the local varieties of soybean from Aceh, Indonesia. To improve the
productivity of this variety, the irradiation mutation technique was applied.
This study aimed to examine the level of genetic diversity in the M5 generation of Kipas Putih soybean
using SSR markers and to identify whether any used markers were associated with
the loci that control the protein content in soybean. A total of 18 SSR markers
were used to amplify the DNA of 11 mutant lines of Kipas Putih. The total alleles detected were
55 alleles which range from 1 to 7 alleles per locus. The average of major
allele’s frequency was 0.71 with the heterogeneity of 0.17. The PIC value
ranged from 0.00 to 0.73 with an average of 0.35. Satt308 was identified as the
most polymorphic marker among others since it had a PIC value greater than
0.70. The genetic distance analysis showed that the mutant lines B4, B10 and
B13 had the furthest genetic distance (0.45) with the Kipas Putih (B0) soybean variety. The phylogenetic
analysis showed Kipas Putih soybean
and ten mutants of M5 generation grouped into four main clusters at
a similarity coefficient of 0.20. Furthermore, association analysis showed that
only two SSR markers, Satt577 and Satt431 were significantly associated with
protein content with an R2 value of 0.7855 to 0.9643.
Keywords:
Genetic diversity; mutant lines; phylogenetic;
SSR markers
Abstrak
Kipas Putih adalah sejenis kacang soya tempatan yang berasal dari Aceh, Indonesia. Untuk meningkatkan produktivitinya, teknik mutasi penyinaran telah diaplikasikan. Kajian ini bertujuan untuk mengetahui tahap kepelbagaian genetik mutan kacang soya Kipas Putih generasi M5 menggunakan penanda SSR dan untuk menentukan sama ada mana-mana penanda yang digunakan berkorelasi dengan lokus yang mengawal ciri kandungan protein dalam kacang soya. Sebanyak 18 penanda SSR digunakan untuk mengamplifikasi 11 titisan mutan kacang soya Kipas Putih. Jumlah alel yang dikesan adalah 55 alel dengan jarak 1 hingga 7 alel setiap lokus. Purata frekuensi alel dominan adalah 0.71 dengan tahap kepelbagaian 0.17. Nilai PIC berjulat antara 0.00 hingga 0.73 dengan purata 0.35. Satt308 dikenal pasti sebagai penanda yang paling polimorfik berbanding penanda SSR lain memandangkan nilai PICnya yang melebihi 0.70. Analisis jarak genetik menunjukkan bahawa titisan mutan B4, B10 dan B13 mempunyai jarak genetik terjauh (0.45) dengan kacang soya Kipas Putih (B0). Analisis filogenetik menunjukkan bahawa kacang soya Kipas Putih dan sepuluh mutan M5 dikelompokkan menjadi empat kelompok utama dengan nilai pekali 0.20. Seterusnya, analisis perkaitan menunjukkan bahawa hanya dua penanda SSR iaitu Satt577
dan Satt431 berkait secara signifikan dengan kandungan protein dengan nilai R2 0.7855 hingga 0.9643.
Kata kunci: Filogenetik; kepelbagaian genetik; penanda SSR; titisan mutan
REFERENCES
Arian, P., Artika,
I.M. & Falah, S. 2016. Amplification and analysis of cytocrome oxidase I of Polypedates leucomystax from Bogor Agricultural University area. Current
Biochemistry 3(1): 13-19.
Bredemeijer, G.M.M., Cooke, R.J., Ganal, M.W., Peeters, R., Isaac, P., Noordijk,
Y., Rendell, S., Jackson, J., Roder, M.S., Wendehake, K., Dijcks, M., Amelaine, M., Wickaert, V.,
Bertrand, L. & Vosman, B. 2002. Construction and
testing of microsatellite database containing more than 500 tomato varieties. Theoretical Applied Genetics 105(6-7):
1019-1026.
Casanadi, G., Vollmann,
J., Stift, G. & Lelly,
T. 2001. Seed quality QTLs identified in a molecular map of early maturing
soybean. Theoretical Applied Genetics 103: 912-919.
Chaerani, Utami, D.W., Hidayatun,
N., Abdullah, B. & Suprihatno, B. 2014. Asosiasi antara marka SSR dengan ketahanan terhadap wereng batang coklat pada varietas dan calon galur harapan padi. Jurnal Entomologi Indonesia 11(1): 43-52.
Foster,
B.P. & Shu, Q.Y. 2012. Plant mutagenesis in crop improvement. In Basic Terms and Applications: Plant Mutation
Breeding and Biotechnology, edited by Shu, Q.Y. & Foster, B.P. Vienna,
Austria: Joint FAO/IAEA Programme.
Giono, B.R.W., Farid, M., Nur, A., Solle,
M.S. & Idrus, I. 2014. Ketahanan genotipe kedelai terhadap kekeringan dan kemasaman, hasil induksi mutasi dengan sinar gamma. Jurnal Agroteknos 4(1): 44-52.
Hildebrand, E., Torney, D.C. & Wagner, R.P. 1992. Informativeness of polymorphic DNA markers. Los Alamos Science 20: 100-102.
Johari,
S., Sutopo, E., Kurnianto,
& Hasviara, E. 2008. Polimorfisme protein darah ayam Kedu. Journal of
Indonesian Tropical Animal Agriculture 33(4): 313-318.
Jun,
T.H., Van, K., Kim, M.Y., Lee, S.H. & Walker, D.R. 2008. Association
analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162(2):
179-191.
Li, Y.H., Smulders, M.J.M., Chang,
R.Z. & Qiu, L.J. 2011. Genetic diversity and
association mapping in a collection of selected Chinese soybean accessions
based on SSR marker analysis. Conservation
Genetics 12: 1145-1157.
Liang, H-Z., Yu, Y-L., Wang, S-F.,
Lian, Y., Wang, T-F., Wei, Y-L., Gong, P-T., Liu, X-Y., Fang, X-J. & Zhang,
M-C. 2010. QTL mapping of isoflavone,
oil and protein contents in soybean (Glycine
max L. Merr). Agricultural
Sciences in China 9(8): 1108-1116.
McCouch, S.R., Teytelman, L., Xu, Y., Lobos,
K.B., Clare, K., Walton, M., Fu, B., Maghirang, R.,
Li, Z., Xing, Y., Zhang, Q., Kono, I., Yano, M., Fjellstrom, R., DeClerck, G.,
Schneider, D., Cartinhour, S., Ware, D. & Stein,
L. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research 9(6): 257-279.
Mudibu, J., Nkongolo, K.K.C., Mbuyi, A.K. & Kizungu, R.V.
2012. Effect of gamma irradiation on morpho-agronomic characteristics of
soybeans (Glycine max L.). American Journal of Plant Sciences 3(3):
331-337.
Nichols, D.M., Glover, K.D.,
Carlson, S.R., Specth, J.E. & Dies, B.W. 2006.
Fine mapping of a seed protein QTL on soybean linkage group I and its
correlated effects on agronomic traits. Crop
Science 46: 834-839.
Nugroho, K., Terryana,
R.T., Reflinur, Asadi &
Lestari, P. 2017. Analisis keragaman genetik kedelai introduksi menggunakan marka mikrosatelit. Informatika Pertanian 26(2): 121-132.
Nuraida, D. 2012. Pemuliaan tanaman cepat dan tepat melalui pendekatan marka molekuler. El-Hayah2(2):
97-103.
Panthee, D.R., Pantalone, V.R., West, D.R.,
Saxton, A.M. & Sams, C.E. 2005. Quantitative
trait loci conditioning protein concentration and quality, and other seed
characteristics in soybean [Glycine max (L.) Merril]. Crop
Science 45(5): 2015-2022.
Pavlov,
J., Delić, N., Živanovic,
T., Ristić, D., Ćamdžija,
Z., Stevanović, M. & Tolimir,
M. 2016. Relationship between genetic distance, specific combining abilities,
and heterosis in maize (Zea mays L.). Genetika 48(1): 165-172.
Risliawati, A., Riyanti,
E.I., Lestari, P., Utami, D.W. & Silitonga, T.S. 2015. Development of SSR marker set to
identify fourty two Indonesian soybean varieties. Jurnal AgroBiogen 11(2): 49-58.
Safina,
N.D. 2017. Keragaman Genetik Kedelai (Glycine
max L.) Introduksi dan Aksesi Lokal berdasarkan Marka SRR. Skripsi. Bogor: Departemen Biokimia, Fakultas Pertanian dan Ilmu Pengetahuan Alami IPB.
Santosa, B., Prasetiyono, J., Dadang, A., Pandin, D.S., Sobir, Rachmadi, M. & Manambangtua,
A.P. 2015. Analisis keragaman 35 aksesi kelapa sawit (Elaeis guineensis Jacq.) asal kamerun berdasarkan karakter produksi awal menggunakan marka SSR. Buletin Palma 16(2): 183-194.
Shi,
A., Chen, P., Zhang, B. & Hou, A. 2010. Genetic diversity and association
analysis of protein and oil content in food-grade soybeans from Asia and the
United States. Plant Breeding 129(3):
250-256.
Shibata,
M., Takayama, K., Ujiie, A., Yamada, T., Abe, J.
& Kitamura, K. 2008. Genetic relationship between lipid content and
linolenic acid concentration in soybean seeds. Breeding Science 58(4): 361-366.
Supriyadi,
H. 2011. Petunjuk teknis pengelolaan tanaman dan sumberdaya terpadu (PTT) kedelai. Balai Pengkajian Teknologi Pertanian (BPTP) Jawa Barat,
Bandung, Indonesia.
Widaningsih, N.A., Purwanto, E., Nandariyah, N. & Reflinur, R.
2014. The use of DNA microsatellite marker for genetic diversity identification
of soybean (Glycine max L. Merril) as a supplementary method in reference collections
management. Indonesian Journal of
Biotechnology 19(2): 136-145.
Yi, Z., Renhai, J., Yanrong, X., Xiuyun, D., Zongyun, H. & Xinger, L.
2017. An analysis on the relationship between maize heterosis and genetic
distance. Asian Agricultural Research 9(3): 77-79.
Zuyasna, Zuraida, Risliawati, A. & Gunawan.
2020. Evaluation of selected soybean mutant of Kipas Putih M4 at the experimental research station faculty of
Agriculture Universitas Syiah Kuala. In The 1st International Conference on Agriculture and Bioindustry. Banda Aceh,
Indonesia. pp. 012016.
*Corresponding author; email: zuyasna@unsyiah.ac.id
|