Sains Malaysiana 51(4)(2022): 1045-1059

http://doi.org/10.17576/jsm-2022-5104-08

 

Kesan Kaedah Pengeringan dan Pelarut yang Berbeza terhadap Kandungan Fenol, Aktiviti Antioksidan dan Antihiperglisemik Ekstrak Rizom Halia Hutan (Alpinia mutica Roxb.)

(Effect of Different Drying Methods and Solvents on Phenol Content, Antioxidant and Antihyperglycemic Activity of Ginger Rhizome Extract (Alpinia mutica Roxb.))

 

LIM CHUE LI1,  HAFEEDZA ABDUL RAHMAN1,2,*, ZULIKA ARSHAD1, NAJIHAH HASSAN NOORHADI1, NOORUL SYUHADA MOHD RAZALI1,2, SENG JOE LIM1,2 & NOOR-SOFFALINA SOFIAN-SENG1,2

 

1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Pusat Inovasi Teknologi Manisan (MANIS), Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 18 May 2021/Accepted: 7 September 2021

 

Abstrak

Alpinia mutica Roxb. (Zingiberaceae), juga dikenali sebagai halia hutan ialah sejenis tumbuhan yang kaya dengan sumber bahan bioaktif, berupaya menentang sel kanser dan berpotensi untuk bertindak sebagai agen antioksidan. Kajian ini dijalankan untuk mengkaji kesan kaedah pengeringan (pengeringan ketuhar (PK) dan sejuk beku (PB)) serta penggunaan campuran pelarut etanol dan air pada nisbah yang berbeza (100:0, 50:50 dan 0:100) terhadap kandungan fenol, aktiviti antioksidan dan antihiperglisemik ekstrak rizom A. mutica (ERA). Kandungan fenol ERA dikaji dengan ujian penentuan Jumlah Kandungan Fenol (TPC) manakala aktiviti antioksidan ditentukan dengan Ujian Aktiviti Penyingkiran Radikal Bebas (DPPH) dan Ujian Kuasa Penurunan Ferik (FRAP). Aktiviti antihiperglisemik dikaji melalui perencatan enzim α-glukosidase. Hasil kajian ini menunjukkan bahawa penggunaan kaedah pengeringan dan pelarut yang berbeza mempengaruhi kandungan fenol, aktiviti antioksidan dan kesan antihiperglisemik ERA. Sampel PK yang diekstrak dengan nisbah pelarut 100:0 menunjukkan aktiviti antioksidan (DPPH) dan kesan antihiperglisemik yang terbaik dengan nilai kepekatan perencatan separuh maksimum (IC50) yang paling rendah, 550.94 ± 50.02 dan 84.97 ± 11.69 µg/mL. Sampel PK (100:0) juga mencatatkan kandungan fenol (155.55 ± 9.36 mg GAE/g ekstrak) dan nilai FRAP (108.98 ± 10.08 mg TEAC/g ekstrak) yang tertinggi dengan perbezaan yang ketara berbanding dengan sampel lain (p < 0.05). Korelasi positif antara TPC dengan aktiviti antioksidan dan antihiperglisemik menunjukkan kebarangkalian bahawa sebatian fenol ialah komponen yang bertanggungjawab terhadap aktiviti biologi yang diperoleh. Hasil kajian ini menunjukkan bahawa teknik pengeringan dan nisbah pelarut ekstrak yang digunakan jelas mempengaruhi kandungan fenol, aktiviti antioksidan dan kesan antihiperglisemik (ERA).

 

Kata kunci: Aktiviti biologi; makanan fungsian; pengeringan ketuhar; pengeringan sejuk beku; sebatian bioaktif

 

Abstract

Alpinia mutica Roxb. (Zingiberaceae), also known as halia hutan is a plant rich in various bioactive compounds (i.e. α-terpineol, linalool and camphor) that are reported to be capable of fighting cancer cells and has the potential to act as a natural antioxidant. This study was carried out to investigate the effect of different drying methods (oven drying (OD) and freeze-drying (FD)) and different extraction solvent ratio of ethanol:water (100:0, 50:50 and 0:100) on the phenolic content, antioxidant and antihyperglycemic activity of A. mutica rhizome extract (ERA). The phenolic content of ERA was determined using Total Phenolic Content (TPC) while antioxidant activity was measured using DPPH (2,2-diphenyl-1-picrylhydrazyl) Free Radical Scavenging test and Ferric Reducing Antioxidant Power (FRAP) test. Antihyperglycemic activity was determined by measuring the inhibition of α-glucosidase enzyme activity. Using the Pearson Correlation test,  the correlation between phenolic content and antioxidant and antihyperglycemic activity was evaluated. The findings of this study indicated that the different drying methods and types of solvent may have significant effects on the phenolic contents, antioxidant and antihyperglycemic activity of ERA. Sample OD extracted with 100:0 showed the best antioxidant (DPPH) and antihyperglycemic activity with the lowest IC50 value of 550.94 ± 50.02 and 84.97 ± 11.69 µg/mL. PK (100:0) also showed highest phenolic content (155.55 ± 9.36 mg GAE/g extract) and FRAP value (108.98 ± 10.08 mg TEAC/g extract) significantly (p < 0.05) compared to other samples. A positive correlation between TPC with antioxidant and anti-hyperglycemic activity showed that the phenolic compound may be responsible for the biological activity obtained. This finding suggested that the total phenolic content,  antioxidant and antihyperglycemic effects of ERA is significantly influenced by drying technique and extraction solvents used.

 

Keywords: Bioactive compounds; biological activity; freeze-drying; functional food; oven drying

 

REFERENCES

Alothman, M., Bhat, R. & Karim, A.A. 2009. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry 115(3): 785-788.

Alsaud, N. & Farid, M. 2020. Insight into the influence of grinding on the extraction efficiency of selective bioactive compounds from various plant leaves. Applied Sciences 10: 1-12.

Association of Official Analytical Chemists, AOAC. 2000. Official Methods of Analysis. Washington D.C.

Burkill, I.H. 1966. A Dictionary of the Economic Products of the Malay Peninsula. Kuala Lumpur: Governments of Malaysia and Singapore by the Ministry of Agriculture and cooperatives.

Canivell, S. & Gomis, R. 2014. Diagnosis and classification of autoimmune diabetes mellitus. Autoimmunity Reviews 13(4-5): 403-407.

Chanthasri, W., Puangkeaw, N., Kunworarath, N., Kunworarath, N., Jaisamut, P., Limsuwan, S., Maneenoon, K., Choochana, P. & Chusri, S. 2018. Antioxidant capacities and total phenolic contents of 20 polyherbal remedies used as tonics by folk healers in Phatthalung and Songkhla provinces, Thailand. BMC Complementary and Alternative Medicine 18(1): 1-11.

Cheng, A.Y.Y. & Fantus, I.G. 2005. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Canada Medical Association Journal 172(2): 213-226.

Chong, K.L. & Lim, Y.Y. 2011. Effects of drying on the antioxidant properties of herbal tea from selected Vitex species. Journal of Food Quality 35(1): 51-59.

Clarke, G., Ting, K.N., Wiart, C. & Fry, J. 2013. High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants 2(1): 1-10.

Das, A., Raychaudhuri, U. & Chakraborty, R. 2012. Effect of freeze drying and oven drying on antioxidant properties of fresh wheatgrass. Int. J. Food Sci. Nutr. 63(6): 718-721.

Dhanani, T., Shah, S., Gajbhiye, N.A. & Kumar, S. 2017. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry 10: 1193-1199.

Do, Q.D., Angkawijaya, A.E., Tran-Nguyen, P.L., Huynh, L.H., Soetaredjo, F.E., Ismadji, S. & Ju, Y.H. 2014. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis 22(3): 296-302.

Dorta, E., Lobo, M.G. & Gonzalez, M. 2012. Reutilization of Mango byproducts: Study of the effect of extraction solvent and temperature on their antioxidant properties. Journal of Food Science 71(1): 80-88.

Elshaafi, I.M., Musa, K.H. & Abdullah Sani, N. 2020. Effect of oven and freeze drying on antioxidant activity, total phenolic and total flavonoid contents of fig (Ficus carica L.) leaves. Food Research 4(6): 2114-2121

Hashim, H., Ahmad, W.Y.W., Zubairi, S.I. & Maskat, M.Y. 2019. Effect of pH on adsorption of organic acids and phenolic compounds by amberlite ira 67 resin. Jurnal Teknologi 81(1): 69-81.

Hossain, M.B., Barry-Ryan, C., Martin-Diana, A.B. & Brunton, N.P. 2010. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry 123(1): 85-91.

Hossain, U., Das, A.K., Ghosh, S. & Sil, P.C. 2020. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology 145: 111738.

Ibrahim, H., Sivasothy, Y., Syamsir, D.R., Nagoor, N.H., Jamil, N. & Awang, K. 2014. Essential oil composition and antimicrobial activities of two closely related species, Alpinia mutica Roxb. and Alpinia latilabris Ridl., from Peninsular Malaysia. The Scientific World Journal 2014: 430831.

Indrayan, A.K., Agrawal, P., Rathi, A.K., Shatru, A., Agrawal, N.K. & Tyagi, D.K. 2009. Nutritive value of some indigenous plant rhizomes resembling ginger. Sri Lankan Journal of Biology 2(2): 36-45.

Johari, M.A. & Khong, H.Y. 2019. Total phenolic content and antioxidant and antibacterial activities of Pereskia bleo. Advances in Pharmacological and Pharmacological Sciences 2019: 7428593.

Khanizadeh, S. 2011. Impact of drying processes on bioactive phenolics, vitamin C and antioxidant capacity of red-fleshed apple slices. Journal of Food Processing and Preservation 35(4): 453-457.

Kiokias, S., Varzakas, T. & Oreopoulou, V.  2008. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Critical Reviews in Food Science and Nutrition 48(1): 78-93.

Kress, W., Liu, A., Newman, M. & Li, Q. 2005. The molecular phylogeny of Alpinia (Zingiberaceae): A complex and polyphyletic genus of gingers. American Journal of Botany 92(1): 167-178.

Kumar, C., Karim, M.A. & Joardder, M.U.H. 2014. Intermittent drying of food products : A critical review. Journal of Food Engineering 121: 48-57.

Kumari, S. & Awanish, P.  2017. Antioxidant potentials of successive solvent extracts from the unexplored Hedhychium coronarium rhizome. Journal of Food Science and Technology 54(10): 3297-3306.

Ma, X.N., Xie, C.L., Miao, Z., Yang, Q. & Yang, X.W. 2017. An overview of chemical constituents from Alpinia species in the last six decades. Royal Society of Chemistry Advances 7(23): 14114-14144.

Marcus, Y. 2018. Extraction by subcritical and supercritical water, methanol, ethanol and their mixtures. Separations 5(1): 4.

Mirghani, M.E.S., Elnour, A.A.M., Kabbashi, N.A., Alam, M.Z., Musa, K.H. & Abdullah, A. 2018. Determination of antioxidant activity of gum arabic: An exudation from two different locations. Science Asia 44: 179-186.

Mohammedi, Z. & Atik, F. 2011. Impact of solvent extraction type on total polyphenols content and biological activity from Tamarix aphylla (L.) Karst. International Journal of Pharma and Bio Sciences 2(1): 609-615.

Naczk, M. & Shahidi, F. 2006. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis 41(5): 1523-1542.

Noreen, H., Semmar, N., Farman, M. & McCullagh, J.S.O. 2017. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pacific Journal of Tropical Medicine 10(8): 792-801.

Osorio-Tobon, J.F. 2020. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology 57: 4299-4315.

Othman, A., Ismail, A., Abdul, N. & Adenan, I.  2007. Food chemistry antioxidant capacity and phenolic content of cocoa beans. Food Chemistry 100(4): 1523-1530.

Pande, J. & Chanda, S. 2020. Screening of anticancer properties of some medicinal plants - Review. International Journal of Current Microbiology and Applied Sciences 9(3): 2319-7706.

Pramod, M., Gurdeep, S., Neetesh, J. & Gupta, M.K. 2019. In-vitro studies on inhibition of alpha amylase and alpha glucosidase by plant extracts of Alternanthera. Pungens kunth Journal of Drug Delivery and Therapeutics 8(6A): 64-68.

Rahman, H.A., Saari, N., Abas, F., Ismail, A., Mumtaz, M.W. & Abdul Hamid, A. 2017. Anti-obesity and antioxidant activities of selected medicinal plants and phytochemical profiling of bioactive compounds. International Journal of Food Properties 20(11): 2616-2629.

Sagrin, M.S. & Chong, G.H. 2013. Effects of drying temperature on the chemical and physical properties of Musa acuminata Colla (AAA Group) leaves. Industrial Crops & Products 45: 430-434.

Sardarodiyan, M. & Mohamadi Sani, A. 2016. Natural antioxidants: Sources, extraction and application in food systems. Nutrition and Food Science 46(3): 363-373.

Scapin, G., Schmidt, M.M., Prestes, R.C. & Rosa, C.S. 2016. Phenolics compounds, flavonoids and antioxidant activity of chia seed extracts (Salvia hispanica) obtained by different extraction conditions. International Food Research Journal 23(6): 2341.

Shah, P. & Modi, H.A. 2015. Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. International Journal for Research in Applied Science and Engineering Technology 3(98): 2321-9653.

Shahidi, F. & Zhong, Y. 2010. Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology 112(9): 930-940.

Sin, T.C., Syed Khalafu, S.H., Mustapha, W.A.W., Maskat, M.Y. & Lim, S.J. 2018. Deodorisation of fucoidan and its effect towards physicochemical characteristics and antioxidation activities. Sains Malaysiana 47(7): 1501-1510.

Sojak, M. & Głowacki, S. 2010. Analysis of giant pumpkin (Cucurbita maxima) drying kinetics in various technologies of convective drying. Journal of Food Engineering 99: 323-329.

Sun, C., Wu, Z., Wang, Z. & Zhang, H. 2015. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of beijing propolis extracts. Evidence-Based Complementary and Alternative Medicine 2015: 595393.

Teng, H., Seuseu, K.T., Lee, W.Y. & Chen, L. 2019. Comparing the effects of microwave radiation on 6-gingerol and 6-shogaol from ginger rhizomes (Zingiber officinale Rosc). PLoS ONE 14(6): e0214893.

Vaya, J., Belinky, P.A. & Aviram, M. 1997. Antioxidant constituents from licorice roots: Isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radical Biology and Medicine 23(2): 302-313.

Wan‐Mohtar, W.A.A.Q.I., Halim‐Lim, S.A., Kamarudin, N.Z., Rukayadi, Y., Abd Rahim, M.H., Jamaludin, A.A. & Ilham, Z. 2020. Fruiting‐body‐base flour from an Oyster mushroom waste in the development of antioxidative chicken patty. Journal of Food Science 85(10): 3124-3133.

Zayapor, M.N., Abdullah, A. & Mustapha, W.A.W. 2020. Antioxidant and anti-diabetic status of popular Malay health tonic consumed for wellness: Help or hype? Sains Malaysiana 49(1): 145-154.

Zengin, H. & Baysal, A.H. 2014. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 19(11): 17773-17798.

Zhang, H., Wang, G., Beta, T. & Dong, J. 2015. Inhibitory properties of aqueous ethanol extracts of propolis on alpha-glucosidase. Evidence-based Complementary and Alternative Medicine 2015: 587383.

Zulaikha, A.S., Mediani, A., Khoo, L.W., Lee, S.Y., Leong, S.W. & Abas, F. 2017. Effect of different drying methods and solvent ratios on biological activities of Phyllanthus acidus extracts. International Food Research Journal 24(1): 114-120.

 

* Corresponding author; email: hafeedzarahman@ukm.edu.my

 

 

 

previous