Sains
Malaysiana 51(4)(2022): 1061-1074
http://doi.org/10.17576/jsm-2022-5104-09
Assessment of Natural Cellulosic
Powder from Pepper Pericarp Waste (Piper
nigrum L.) after Alkalization and Bleaching Treatment: Effect of Alkali
Concentration and Treatment Cycle
(Penilaian Serbuk Selulosa Semula
Jadi daripada Sisa Perikarpa Lada (Piper
nigrum L.) selepas Rawatan Alkali dan Pelunturan: Kesan Kepekatan Alkali
dan Kitaran Rawatan)
AIN NADIAH SOFIAH AHMAD KHORAIRI1,
NOOR-SOFFALINA SOFIAN-SENG1,2,*, RIZAFIZAH
OTHAMAN3, NOORUL SYUHADA MOHD RAZALI1,2 & KHAIRUL
FARIHAN KASIM4
1Department
of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Innovation
Centre for Confectionery Technology (MANIS), Faculty of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4School of Bioprocess Engineering,
Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
Received:
11 March 2021/Accepted: 7 September 2021
Abstract
Pepper (Piper nigrum L.) pericarp is an
agriculture waste in the production of white pepper. It is underutilised agro-industrial waste which could be a
promising natural source of cellulose. Hence, finding an optimum way to remove the non cellulose
components without degrading the cellulose structure is essential. In this
work, the effects of alkaline concentration (4, 5, and 6% NaOH) and number of
soaking cycle (3 & 4 cycles) on the characteristics of cellulose from
pepper pericarp were investigated. The obtained cellulose powder was
characterized for its yield, α-cellulose content, particle size, zeta
potential, morphology, whiteness index, crystallinity degree and thermal
stability. The white powder cellulose after 4th cycle treatment with
4% NaOH appeared to have the highest yield (23.63%), α-cellulose (65.97%),
crystallinity structure (51%) and better thermal stability at 334 °C. FTIR
spectrum at band around 1732 cm-1 indicates a partial removal of
non-cellulosic material at all alkalization condition due to the presence of
remaining lignin and hemicellulose. These may contribute to formation of
negative surface charge on all cellulose samples which may potentially enhance
the functionality of the material as emulsifier. Based on two-way ANOVA test,
concentration and cycle of alkaline treatment significantly (p<0.05)
influenced the yield, particle size and zeta potential, meanwhile
α-cellulose significantly influence by NaOH concentration only
(p<0.05). The findings showed that manipulating the synthesis condition of
cellulose powder influenced its properties which could be further used in
various applications.
Keywords: Cellulose powder; concentration alkaline solution;
morphology; white pepper pericarp
Abstrak
Perikarpa
lada (Piper nigrum L.) adalah sisa
pertanian dalam pengeluaran lada putih. Bahan buangan agroindustri yang kurang
digunakan ini mungkin boleh menjadi sumber semula jadi selulosa. Oleh itu,
mencari kaedah yang optimum untuk membuang komponen bukan selulosa tanpa
merosakkan strukturnya adalah sangat penting. Dalam kajian ini, kesan kepekatan
alkali (4, 5 dan 6% NaOH) dan bilangan kitaran rendaman (3 & 4 kitaran)
terhadap ciri serbuk selulosa daripada perikarpa lada dikaji. Serbuk selulosa
dicirikan berdasarkan hasil, kandungan α-selulosa, saiz zarah, potensi
zeta, morfologi, indeks keputihan, tahap kehabluran dan kestabilan terma.
Serbuk putih selulosa dengan 4% NaOH pada 4 kitaran rendaman alkali mempunyai
hasil tertinggi (23.63%), α-selulosa yang tinggi (65.97%), struktur
kehabluran (51%) dan kestabilan terma yang lebih baik pada 334 °C. Spektrum
FTIR pada sekitar jalur 1732 cm-1 menunjukkan penyingkiran separa
bahan bukan selulosa pada semua keadaan rawatan alkali. Ini mungkin menyumbang
kepada cas permukaan negatif pada sampel selulosa yang berpotensi dapat
meningkatkan fungsi bahan sebagai pengemulsi. Berdasarkan ujian ANOVA dua hala,
kepekatan dan kitaran rawatan alkali secara signifikan (p<0.05) mempengaruhi
hasil, saiz zarah dan potensi zeta, sementara α-selulosa hanya dipengaruhi
secara signifikan oleh kepekatan NaOH sahaja (p<0.05). Secara keseluruhan,
penemuan kajian ini membuktikan bahawa manipulasi keadaan sintesis selulosa
mampu untuk mempengaruhi sifatnya sehingga dapat digunakan dalam pelbagai
aplikasi.
Kata
kunci: Kepekatan cecair alkali;
morfologi; perikarpa lada putih; serbuk selulosa
REFERENCES
Abdullah,
N.A., Sainorudin, M.H., Rani, M.S.A., Mohammad, M., Abd Kadir, N.H. & Asim,
N. 2021. Structure and thermal properties of microcrystalline cellulose
extracted from coconut husk fiber. Polimery 66(3): 187-192.
Aziz, N.S., Sofian‐Seng, N.S., Mohd Razali, N.S., Lim, S.J.
& Mustapha, W.A. 2019. A review on conventional and biotechnological
approaches in white pepper production. Journal
of the Science of Food and Agriculture 99(6): 2665-2676.
Aziz, N.S., Sofian-Seng, N.S. & Mustapha, W.A.W. 2018.
Functional properties of oleoresin extracted from white pepper (Piper nigrum L.) retting wastewater. Sains Malaysiana 47(9):
2009-2015.
Cai, M., Takagi, H., Nakagaito, A.N., Katoh, M., Ueki, T.,
Waterhouse, G.I. & Li, Y. 2015. Influence of alkali treatment on internal
microstructure and tensile properties of abaca fibers. Industrial Crops and Products 65: 27-35.
Chen, Y., Stevens, M.A., Zhu, Y., Holmes, J. & Xu, H.
2013. Understanding of alkaline pretreatment parameters for corn stover
enzymatic saccharification. Biotechnology
for Biofuels 6: 8.
Chien, J.P.U. & Mansel, E.L. 2017. 100 Years of Agricultural Development in
Sarawak. Kuching, Malaysia: Sarawak Agriculture Veteran Association. pp.
1-245.
Ching, Y.C. & Ng,
T.S. 2014. Effect of preparation conditions on cellulose from oil palm empty
fruit bunch fiber. BioResources 9(4): 6373-6385.
Devi, T.B., Ravi, Y. & Dawange, S.P. 2018. Processed
products from black pepper. Kerala
Karshakan e-Journal August: 9-14.
Din, N.A.S., Lim, S.J.,
Maskat, M.Y. & Zaini, N.A.M. 2020. Bioconversion of coconut husk fibre
through biorefinery process of alkaline pretreatment and enzymatic hydrolysis. Biomass Conversion and Biorefinery 11(3): 815-826.
Entebang, H., Wong, S.K. & Mercer, Z.J.A. 2020.
Development and performance of the pepper industry in Malaysia: A critical
review. International Journal of Business
and Society 21(3): 1402-1423.
Fareez, I.M., Ibrahim, N.A., Wan
Yaacob, W.M.H., Mamat Razali, N.A., Jasni, A.H. & Aziz, F.A. 2018.
Characteristics of cellulose extracted from Josapine pineapple leaf fibre after
alkali treatment followed by extensive bleaching. Cellulose 25(8): 4407-4421.
Fatmawati, A., Gunawan, K.Y. &
Hadiwijaya, F.A. 2017. Hydrolysis of alkaline pretreated banana peel. In IOP Conference Series: Materials Science and
Engineering. IOP Publishing. 273(1): 012011.
Fiore, V., Scalici, T. & Valenza, A. 2014.
Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymer 106: 77-83.
German Association of Cellulose Chemists and Engineers.
1951. Bestimmung der Alphacellulose und de langeunloslichen Anteils von
Zellstoffen. Markblatt IV/29 Zellcheming.
Gomes, A., Matsuo, T., Goda, K. & Ohgi, J. 2007.
Development and effect of alkali treatment on tensile properties of curaua
fiber green composites. Composites Part
A: Applied Science and Manufacturing 38(8): 1811-1820.
Held, M.A., Jiang, N., Basu, D., Showalter, A.M. &
Faik, A. 2015. Plant cell wall polysaccharides: Structure and biosynthesis. In Polysaccharides: Bioactivity and
Biotechnology, edited by Ramawat, K.G. & Mérillon, J.M. New York:
Springer Science+Business Media. pp. 3-54.
International Pepper
Community. 2018. Pepper Statistical
Yearbook.http://www.ipcnet.org/n/psy2018/html/swps.html. Accessed on 18 February 2019.
Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction,
preparation and characterization of cellulose fibres and nanocrystals from rice
husk. Industrial Crops and Products 37(1): 93-99.
Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P.
& Saravanakumar, S.S. 2019. Characterization of cellulose fibers in Thespesia populnea barks: Influence of
alkali treatment. Carbohydrate Polymer 217: 178-189.
Kim, J.S., Lee, Y.Y. & Kim, T.H. 2016. A review on
alkaline pre-treatment technology for bioconversion of lignocellulosic biomass. BioResources 199: 42-48.
Kunusa, W.R., Isa, I., Laliyo,
L.A.R. & Iyabu, H. 2018. FTIR, XRD and SEM analysis of microcrystalline
cellulose (MCC) fibers from corncorbs in alkaline treatment. In Journal of Physics: Conference Series 1028(1): 012199.
Mariño, M.A., Rezende, C.A. & Tasic, L. 2018. A
multistep mild process for preparation of nanocellulose from orange bagasse. Cellulose 25(10): 5739-5750.
Mohd, N.H., Ismail, N.F.H.,
Zahari, J.I., Fathilah, W., Kargarzadeh, H., Ramli, S., Ahmad, I., Yarmo, M.A.
& Othaman, R. 2016. Effect of aminosilane modification on nanocrystalline
cellulose properties. Journal of
Nanomaterials 2016: 4804271.
Olalere, O.A., Abdurahman, H.N., Yunus, R.B.M., Alara,
O.R., Ahmad, M.M., Zaki, Y.H. & Abdlrhman, H.S.M. 2018. Parameter study, antioxidant
activities, morphological and functional characteristics in microwave
extraction of medicinal oleoresins from black and white pepper. Journal of Taibah University for Science 12(6): 730-737.
Ouajai,
S. & Shanks, R.A. 2005. Composition, structure and thermal degradation of
hemp cellulose after chemical treatments. Polymer
Degradation and Stability 89(2): 327-335.
Oushabi, A., Sair, S., Hassani, F.O., Abboud, Y., Tanane,
O. & El Bouari, A. 2017. The effect of alkali treatment on mechanical,
morphological and thermal properties of date palm fibers (DPFs): Study of the
interface of DPF-polyurethane composite. South
African Journal of Chemistry 23: 116-123.
Radakisnin, R., Abdul Majid, M.S., Jamir, M.R.M., Jawaid,
M., Sultan, M.T.H. & Mat Tahir, M.F. 2020. Structural, morphological and
thermal properties of cellulose nanofibers from Napier fiber (Pennisetum purpureum). Materials 13(18): 4125.
Raman, G. & Gaikar,
V.G. 2002. Extraction of piperine from Piper
nigrum (black pepper) by hydrotropic solubilization. Industrial &
Engineering Chemistry Research 41(12): 2966-2976.
Reddy,
K.O., Maheswari, C.U., Shukla, M., Song, J.I. & Rajulu, A.V. 2013. Tensile
and structural characterization of alkali treated Borassus fruit fine
fibers. Composites Part B: Engineering 44(1):
433-438.
Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski,
K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, S.H. & Imam, S.H. 2010. Cellulose
nanowhiskers from coconut husk fibers: Effect of preparation conditions on
their thermal and morphological behavior. Carbohydrate
Polymers 81(1): 83-92.
Rosnah, S. & Chan,
S.C. 2014. Enzymatic rettings of green pepper berries for white pepper
production. International Food Research Journal 21(1): 237-245.
Santos, E.B.C., Moreno, C.G., Barros, J.J.P., Moura,
D.A.D., Fim, F.D.C., Ries, A., Wellen, R.M. & Silva, L.B.D. 2018. Effect of
alkaline and hot water treatments on the structure and morphology of Piassava
fibers. Journal of Materials Research 21(2): e20170365.
Segal, L.G.J.M.A., Creely, J.J., Martin Jr., A.E. &
Conrad, C.M. 1959. An empirical method for estimating the degree of
crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10):
786-794.
Singanusong, R., Tochampa, W.,
Kongbangkerd, T. & Sodchit, C. 2014. Extraction and properties of cellulose
from banana peels. Suranaree Journal of
Science & Technology 21(3): 201-213.
Sosiati, H., Pratiwi, H. &
Wijayanti, D.A. 2015. The influence of alkali treatments on tensile strength
and surface morphology of cellulose microfibrils. Advanced Materials Research 1123: 147-150.
Sreekala, G.S., Meenakumari, K.S.
& Vigi, S. 2019. Microbial isolate for the production of quality white
pepper (Piper nigrum L.). Journal of Tropical Agriculture 57(2):
114-121.
Tenorio, A.T., Gieteling, J., Nikiforidis, C.V., Boom,
R.M. & Van der Goot, A.J. 2017. Interfacial properties of green leaf
cellulosic particles. Food Hydrocolloid 71: 8-16.
Tibolla, H., Pelissari, F.M.,
Martins, J.T., Vicente, A.A. & Menegalli, F.C. 2018. Cellulose nanofibers
produced from banana peel by chemical and mechanical treatments:
Characterization and cytotoxicity assessment. Food Hydrocolloids 75: 192-201.
Tran, A.T., Cao, N.H., Le, P.T.K., Mai, P.T. & Nguyen,
Q.D. 2020. Reusing alkaline solution in lignocellulose pre-treatment to save
consumable chemicals without losing efficiency. Chemical Engineering Transactions 78: 307-312.
Wallecan, J., McCrae, C., Debon, S.J.J., Dong, J. &
Mazoyer, J. 2015. Emulsifying and stabilizing properties of functionalized
orange pulp fibers. Food Hydrocolloid 47: 115-123.
Widiarto, S., Yuwono, S.D., Rochliadi, A. & Arcana,
I.M. 2017. Preparation and characterization of cellulose and nanocellulose from
agro-industrial waste-cassava peel. In IOP
Conference Series: Materials Science and Engineering 176(1): 012052.
Winuprasith, T. & Suphantharika, M. 2013.
Microfibrillated cellulose from mangosteen (Garcinia
mangostana L.) rind: Preparation, characterization, and evaluation as an
emulsion stabilizer. Food Hydrocolloid 32(2): 383-394.
Yew, B.S., Muhamad, M., Mohamed,
S.B. & Wee, F.H. 2019. Effect of alkaline treatment on structural
characterisation, thermal degradation and water absorption ability of coir
fibre polymer composites. Sains
Malaysiana 48(3): 653-659.
Zahari,
M.J.I., Jahi, N.M., Mohd, N.H., Ahmad, I., Baharum, A., Lazim, A.M., Ramli, S.
& Othaman, R. 2018. Enhanced performance of cellulose from palm oil empty
fruit bunch (EFB) via acetylation and silylation. Preprints 2018: 2018070314.
Zain, N.F.M., Yusop, S.M. & Ahmad, I. 2014.
Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. Journal of Nutrition & Food Science 5(1): 1000334.
Zhou, Y.M., Fu, S.Y., Zheng, L.M. & Zhan, H.Y. 2012.
Effect of nanocellulose isolation techniques on the formation of reinforced
poly (vinyl alcohol) nanocomposite films. eXPRESS
Polymer Letters 6(10): 794-804.
*Corresponding author; email: soffalina@ukm.edu.my
|