Sains
Malaysiana 51(5)(2022): 1465-1473
http://doi.org/10.17576/jsm-2022-5105-16
Identification of Antimycobacterial
from Actinobacteria (INACC A758) Secondary Metabolites using Metabolomics Data
(Pengenalpastian Antimikobakteria
daripada Metabolit Sekunder Aktinobakteria (INACC A758)
menggunakan Data
Metabolomik)
MAYA
DIAN RAKHMAWATIE1,2,
MUSTOFA3, PUSPITA LISDIYANTI4, WORO RUKMI PRATIWI3 & TRI WIBAWA5,*
1Doctoral
Program of Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
2Department
of Biomedical Sciences, Faculty of Medicine, Universitas Muhammadiyah Semarang, Semarang 50273, Indonesia
3Department
of Pharmacology and Therapy, Faculty
of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
4Research
Center for Biotechnology, Indonesian
Institute of Sciences, Cibinong, Bogor
16911, Indonesia
5Department
of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Received: 10 July 2020/Accepted: 8 October 2021
Abstract
Actinobacteria
produce active secondary metabolite with medicinal properties, such as
antibacterial or anticancer. However, there are some reports about the
difficulties in discovering novel secondary metabolites. Therefore, the need
for a new approach is obvious. Several factors such as types of nutrients in
the culture media or different solvents used for extraction have been proven to
influence the Actinobacteria secondary metabolite production. In this study, a
combination of culture media optimization and metabolites fingerprint analysis
were applied to identify antimycobacterial active compounds from Actinobacteria
(InaCC A758). Five culture media were used in the secondary metabolite
production of the Actinobacteria. The metabolite fingerprinting was carried out
by analyzing the secondary metabolite profile extracted from culture media
optimization using UPLC-MS. Multivariate analysis, i.e. cluster analysis and
principal component analysis (PCA) was applied. The result showed that a unique
antimycobacterial compound candidate against Mycobacterium smegmatis was
produced by SYP media cultured InaCC A758 (MIC 6.25 µg/mL).
Keywords:
Actinobacteria; antimycobacterial; culture optimization; metabolite
fingerprint; secondary metabolites
Abstrak
Aktinobakteria
menghasilkan metabolit sekunder aktif dengan sifat perubatan, seperti
antibakteria atau antikanser. Walau bagaimanapun, terdapat beberapa laporan
tentang kesukaran untuk menemui metabolit sekunder yang novel. Oleh itu,
keperluan untuk pendekatan baru adalah jelas. Beberapa faktor seperti jenis
nutrien dalam media kultur atau pelarut berbeza yang digunakan untuk
pengekstrakan telah terbukti mempengaruhi pengeluaran metabolit sekunder
Aktinobakteria. Dalam kajian ini, gabungan pengoptimuman media kultur dan
analisis cap jari metabolit digunakan untuk mengenal pasti sebatian aktif
antimikobakteria daripada Aktinobakteria (InaCC A758). Lima media kultur
digunakan dalam penghasilan metabolit sekunder Aktinobakteria. Cap jari
metabolit telah dijalankan dengan menganalisis profil metabolit sekunder yang
diekstrak daripada pengoptimuman media kultur menggunakan UPLC-MS. Analisis
multivariat, iaitu analisis kelompok dan analisis komponen utama (PCA) telah
digunakan. Keputusan menunjukkan bahawa sebatian antimikrobakteria unik terhadap Mycobacterium
smegmatis dihasilkan oleh media SYP yang dikulturkan dengan InaCC A758 (MIC
6.25 µg/mL).
Kata
kunci: Aktinobakteria; antimikobakteria; cap jari metabolit; metabolit
sekunder; pengoptimuman budaya
REFERENCES
Adnani,
N., Vazquez-Rivera, E., Adibhatla, S.N., Ellis, G.A., Braun, D.R. & Bugni,
T.S. 2015. Investigation of interspecies interactions within marine
micromonosporaceae using an improved co-culture approach. Marine Drugs 13(10): 6082-6098.
Al-Ansari, M., Kalaiyarasi, M., Almalki,
M.A. & Vijayaraghavan, P. 2020. Optimization of medium components for the
production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. Journal of King Saud University - Science 32(3): 1993-1998.
Al-Ghazali, L.H. & Omran, R. 2017.
Optimization of medium composition for antibacterial metabolite production from Streptomyces sp. Asian Journal of
Pharmaceutical and Clinical Research 10(9): 381-385.
Barka, E.A., Vatsa, P., Sanchez, L.,
Gaveau-Vaillant, N., Jazquard, C., Klenk, H.P., Clément, C., Ouhdouch, Y. &
van Wezeld, G.P. 2016. Taxonomy, physiology, and natural products of
Actinobacteria. Microbiology and
Molecular Biology Review 80(1): 1-43.
Bérdy, J. 2012. Thoughts and facts about
antibiotics: where we are now and where we are heading. The Journal of Antibiotics 65(8): 385-395.
Bode, H.B., Bethe, B., Höfs, R. &
Zeeck, A. 2002. Big effects from small changes: Possible ways to explore
nature’s chemical diversity. ChemBioChem 3(7): 619-627.
Brown-Elliott, B.A., Nash, K.A. &
Wallace Jr., R.J. 2012. Antimicrobial susceptibility
testing, drug resistance mechanisms, and therapy of infections with
nontuberculous mycobacteria. Clinical
Microbiology Reviews 25(3): 545-582.
Cordella, C.B.Y. 2012. PCA: The basic building block of
chemometrics. In Analytical
Chemistry, edited by Krull, I.S. IntechOpen. pp. 1-46.
Cumsille, A., Undabarrena, A., González,
V., Claverías, F., Rojas, C. & Cámara, B. 2017. Biodiversity of
actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with
metabolic profiling. Marine Drugs 15(9): 286.
Derewacz, D.K., Goodwin, C.R., McNees,
C.R., McLean, J.A. & Bachmann, B.O. 2013. Antimicrobial drug resistance
affects broad changes in metabolomic phenotype in addition to secondary
metabolism. In Proceedings of the
National Academy of Sciences of the United States of America. Pennsylvania
State University. 110(6): 2336-2341.
Djinni, I., Defant, A., Kecha, M. &
Mancini, I. 2013. Metabolite profile of marine-derived endophytic Streptomyces sundarbansensis WR1L1S8 by
liquid chromatography-mass spectrometry and evaluation of culture conditions on
antibacterial activity and mycelial growth. Journal
of Applied Microbiology 116(1): 39-50.
Escher, S.K.S., de Sousa Júnior, J.J.V.,
Dias, A.L., de Amorim, E.L.C. & De Araújo, J.M. 2016. Influence of glucose
and stirring in the fermentation process in order to produce anti-Candida metabolites
produced by Streptomyces sp. Brazilian Journal of Pharmaceutical Sciences 52(2): 265-272.
de Oliveira, M.F., da Silva, M.G. &
Van Der Sand, S.T. 2010. Anti-phytopathogen potential of endophytic
actinobacteria isolated from tomato plants (Lycopersicon
esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Research in Microbiology 161(7): 565-572.
Forner, D., Berrué, F., Correa, H.,
Duncan, K. & Kerr, R.G. 2013. Chemical dereplication of marine actinomycetes
by liquid chromatography - high
resolution mass spectrometry profiling and statistical analysis. Analytica Chimica Acta 805: 70-79.
Gaudêncio, S.P. & Pereira, F. 2015.
Dereplication: Racing to speed up
the natural products discovery process. Natural Product Reports 32(6): 779-810.
Guillarme, D., Schappler, J., Rudaz, S.
& Veuthey, J.L. 2010. Coupling ultra-high-pressure liquid chromatography
with mass spectrometry. TrAC Trends
in Analytical Chemistry 29(1): 15-27.
Hamedi, J., Imanparast, S. &
Mohammadipanah, F. 2015. Molecular, chemical and biological screening of soil
actinomycete isolates in seeking bioactive peptide metabolites. Iranian Journal of Microbiology 7(1): 23-30.
Happyana, N., Muntendam, R. & Kayser,
O. 2012. Metabolomics
as a bioanalytical tool for characterization of medicinal plants and their
phytochemical preparations. In Pharmaceutical
Biotechonology: Drug Discovery
and Clinical Applications. 2nd ed., edited by
Kayser, O. & Warzecha, H. Chapter 20.
Wiley - VCH Verlag GmbH & Co. KGaA.
Hoshino, S., Zhang, L., Awakawa, T.,
Wakimoto, T., Onaka, H. & Abe, I. 2014. Arcyriaflavin E, a new cytotoxic
indolocarbazole alkaloid isolated by combined-culture of mycolic
acid-containing bacteria and Streptomyces
cinnamoneus NBRC 13823. The Journal
of Antibiotics 68(5): 342-344.
Ito, T., Odake, T., Katoh, H., Yamaguchi,
Y. & Aoki, M. 2011. High-throughput profiling of microbial extracts. Journal of Natural Products 74(5): 983-988.
Jacob, J., Rajendran, R.U., Priya, S.H.,
Purushothaman, J. & Saraswathy Amma, D.K.B.N. 2017. Enhanced antibacterial
metabolite production through the application of statistical methodologies by a Streptomyces nogalater NIIST A30
isolated from Western Ghats forest soil. PLoS
ONE 12(4): e0175919.
Kiranmayi, M.U., Sudhakar, P.,
Sreenivasulu, K. & Vijayalakshmi, M. 2011. Optimization of culturing
conditions for improved production of bioactive metabolites by Pseudonocardia sp. VUK-10. Mycobiology 39(3): 174-181.
Lahlou, M. 2013. The success of natural
products in drug discovery. Pharmacology
& Pharmacy 4: 17-31.
Liu, X., Ashforth, E., Ren, B., Song, F.,
Dai, H., Liu, M., Wang, J., Xie, Q. & Zhang, L. 2010. Bioprospecting
microbial natural product libraries from the marine environment for drug
discovery. The Journal of Antibiotics 63(8): 415-422.
Mammo, F. & Endale, M. 2015. Recent
trends in rapid dereplication of natural product extracts: An update. Journal of Coastal Life Medicine 3(3): 178-182.
Mangamuri, U.K., Poda, S., Naragani, K.
& Muvva, V. 2012. Influence of cultural conditions for improved production
of bioactive metabolites by Streptomyces
cheonanensis VUK-A isolated from coringa mangrove ecosystem. Currents Trends in Biotechnolology and
Pharmacy 6(1): 99-111.
Narayana, K.J.P. & Vijayalakshmi, M.
2008. Optimization of antimicrobial metabolites production by Streptomyces albidoflavus. Research Journal of Pharmacology 2(1): 4-7.
Perrot-Dockès, M., Lévy-Leduc, C.,
Chiquet, J., Sansonnet, L., Brégère, M., Étienne, M.P., Robin, S. &
Genta-Jouve, G. 2018. A variable selection approach in the multivariate linear
model: An application to LC-MS metabolomics data. Statistical Application in Genetics and
Molecular Biology 17(5): 1-14.
Rajan, B.M. & Kannabiran, K. 2014.
Extraction and identification of antibacterial secondary metabolites from
marine Streptomyces sp. VITBRK2. International Journal
of Molecular and
Cellular Medicine 3(3): 130-137.
Rakhmawatie, M.D., Wibawa, T., Lisdiyanti,
P., Pratiwi, W.R. & Mustofa. 2019. Evaluation of crystal violet
decolorization assay and resazurin microplate assay for antimycobacterial
screening. Heliyon 5(8): e02263.
Retnowati, Y., Moeljopawiro, S., Djohan,
T.S. & Soetarto, E.S. 2018. Antimicrobial activities of actinomycete isolates
from rhizospheric soils in different mangrove forests of Torosiaje, Gorontalo,
Indonesia. Biodiversitas Journal
of Biological Diversity 19(6): 2196-2203.
Romano, S., Jackson, S.A., Patry, S. &
Dobson, A.D.W. 2018. Extending the “one strain many compounds” (OSMAC)
principle to marine microorganisms. Marine
Drugs 16(7): 244.
Romero-Rodríguez, A., Maldonado-Carmona,
N., Ruiz-Villafán, B., Koirala, N., Rocha, D. & Sánchez, S. 2018. Interplay
between carbon, nitrogen and phosphate utilization in the control of secondary
metabolite production in Streptomyces. Antonie van Leeuwenhoek 111(5): 761-781.
Ruiz, B., Chávez, A., Forero, A.,
García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B.,
Rodríguez-Sanoja, R., Sánchez, S. & Langley, E. 2010. Production of
microbial secondary metabolites: Regulation by the carbon source. Critical Reviews Microbiology 36(2): 146-167.
Schrey, S.D., Erkenbrack, E., Früh, E.,
Fengler, S., Hommel, K., Horlacher, N., Schulz, D., Ecke, M., Kulik, A.,
Fiedler, H.P., Hampp, R. & Tarkka, M.T. 2012. Production of fungal and
bacterial growth modulating secondary metabolites is widespread among
mycorrhiza-associated Streptomycetes. BMC Microbiology 12: 1-14.
Sengupta, S., Pramanik, A., Ghosh, A.
& Bhattacharyya, M. 2015. Antimicrobial activities of actinomycetes
isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiology 15: 170.
Setiawati, S., Nuryastuti, T., Sholikhah,
E.N., Lisdiyanti, P., Pratiwi, S.U.T.,
Sulistiyani, T.R., Ratnakomala, S., Jumina & Mustofa. 2021. The potency of
actinomycetes extracts isolated from Pramuka Island, Jakarta, Indonesia as
antimicrobial agents. Biodiversitas
Journal of Biological University 22(3): 1104-1111.
Sharma, D., Kaur, T., Chadha, B.S. &
Manhas, R.K. 2011. Antimicrobial activity of actinomycetes against multidrug
resistant Staphylococcus aureus, E. coli and various other pathogens. Tropical Journal of Pharmaceutical Research 10(6): 801-808.
Singh, R. & Dubey, A.K. 2018.
Diversity and applications of endophytic Actinobacteria of plants in special
and other ecological niches. Frontiers in
Microbiology 9: 1767.
Son, S.Y., Lee, S., Singh, D., Lee, N.R.,
Lee, D.Y. & Lee, C.H. 2018. Comprehensive secondary metabolite profiling
toward delineating the solid and submerged-state fermentation of Aspergillus oryzae KCCM 12698. Frontiers in Microbiology 9: 1076.
Tormo, J.R., García, J.B., DeAntonio, M.,
Feliz, J., Mira, A., Díez, M.T., Hernández, P. & Peláez, F. 2003. A method
for the selection of production media for actinomycete strains based on their
metabolite HPLC profiles. Journal of
Industrial Microbiology and Biotechnology 30(10): 582-588.
van Ingen, J., Boeree, M.J., van
Soolingen, D. & Mouton, J.W. 2012. Resistance mechanisms and drug
susceptibility testing of nontuberculous mycobacteria. Drug Resistance Updates 15(3): 149-161.
Wang, X., Huang, L., Kang, Z., Buchenauer,
H. & Gao, X. 2010. Optimization of the fermentation process of Actinomycete strain Hhs.015(T). Journal of Biomedicine and Biotechnology 2010: 141876.
Wolfender, J.L., Marti, G., Thomas, A.
& Bertrand, S. 2015. Current approaches and challenges for the metabolite
profiling of complex natural extracts. Journal
of Chromatography A 1382: 136-164.
Wolfender, J.L., Nuzillard, J.M., van der
Hooft, J.J.J., Renault, J.H. & Bertrand, S. 2019. Accelerating metabolite
identification in natural product research: Toward
an ideal combination of liquid chromatography-high-resolution tandem mass
spectrometry and NMR profiling, in silico databases, and chemometrics. Analytical Chemistry 91(1): 704-742.
Woods, G.L., Brown-Elliott, B.A.,
Conville, P.S., Desmond, E.P., Hall, G.S., Lin, G., Pfyffer, G.E., Ridderhof,
J.C., Siddiqi, S.H., Wallace Jr., R.J.
& Warren, N.G. 2011. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic
Actinomycetes. 2nd eds. Clinical
and Laboratory Standards Institute (CLSI). CLSI Standard: Guidelines for Health
Care Excellence.
Zaher, A.M., Moharram, A.M., Davis, R.,
Panizzi, P., Makboul, M.A. & Calderón, A.I. 2015. Characterisation of the
metabolites of an antibacterial endophyte Botryodiplodia
theobromae Pat. of Dracaena draco L. by LC-MS/MS. Natural Product Research 29(24): 2275-2281.
Zhu, H., Sandiford, S.K. & van Wezel,
G.P. 2014. Triggers and cues that activate antibiotic production by
actinomycetes. Journal of Industrial
Microbiology and Biotechnology 41(2): 371-386.
*Corresponding author; email:
twibawa@ugm.ac.id
|