Sains Malaysiana 51(7)(2022):
2047-2059
http://doi.org/10.17576/jsm-2022-5107-09
Pectin Derived from Hydrolysis of
Ripe Kepok Kuning Banana Peel Powder
Employing Crude Pectinases Produced by Aspergillus niger
(Pektin Terhasil daripada
Hidrolisis Serbuk Kulit Pisang Kepok Kuning Matang menggunakan Pektina Mentah
yang Dihasilkan oleh Aspergillus niger)
ANDRI
CAHYO KUMORO1,2*, SHINTA MARIANA1, TRI HANLY MAURICE1 & JEFRI PANDU HIDAYAT1,2,3
1Department of Chemical Engineering,
Faculty of Engineering, Universitas Diponegoro, 50275 Semarang, Indonesia
2Institute of Food and Remedies
BioMaterials, Department of Chemical Engineering, Faculty of Engineering,
Universitas Diponegoro, 50275 Semarang, Indonesia
3Chemical Engineering Study Program,
Department of Industrial and Process Technology, Institut Teknologi Kalimantan,
Jl. Soekarno-Hatta Km. 15, Karang Joang, Balikpapan, 76127 Kalimantan Timur,
Indonesia
Received: 13
August 2021/Accepted: 14 January 2022
REFERENCES
Banana fruits consumption generates about 35% weight
of peel waste containing approximately 10.61 to 24 w/w% of pectin. Hence,
improper banana peel waste management may induce various environmental and
health issues. The objectives of this work were to study the effect of
substrate concentration, pH, temperature, and duration on the yield of pectin
extracted from enzymatic hydrolysis of banana peel powder. In this work, the
crude enzymes were obtained via submerged fermentation of Kepok Kuning banana peel powder utilising Aspergillus
niger and directly used without prior purification.
Pectin extraction from banana peel powder was performed through hydrolysis
using crude pectinases at various substrate concentrations (0.033 to 0.123
g/mL), pH (4.0 to 6.0), and temperature (40 to 70°C) for 180 min. The increase
of extraction parameters enhanced the pectin yield to a maximum value and then
declined. High substrate concentration, temperature, pH, and monomeric pectin
compounds formation at long hydrolysis duration were found to reduce enzyme
activity. A recommended extraction condition is using 0.103 g/mL substrate
concentration, pH 5.0, and 55 °C for 120 min to achieve 10.80% weight yield.
Commercial implementations of the results can be worthwhile in solving the
environmental problem and enhance the economic value of pectin-rich fruit peels
and other agricultural wastes.
Keywords: Banana peel; crude pectinase; extraction
condition; hydrolysis
REFERENCES
Penggunaan buah pisang menjana kira-kira 35% berat
sisa kulit yang mengandungi kira-kira 10.61 hingga 24 w/w% pektin. Oleh itu,
pengurusan sisa kulit pisang yang tak wajar boleh menyebabkan pelbagai isu alam
sekitar dan kesihatan. Objektif kertas ini adalah untuk mengkaji kesan
kepekatan substrat, pH, suhu dan tempoh ke atas hasil pektin yang diekstrak
daripada hidrolisis enzim serbuk kulit pisang. Dalam kajian ini, enzim mentah
diperoleh melalui penapaian terendam serbuk kulit pisang Kepok Kuning
menggunakan Aspergillus niger dan digunakan terus tanpa penulenan terlebih
dahulu. Pengekstrakan pektin
daripada serbuk kulit pisang dilakukan melalui hidrolisis menggunakan pektinase
mentah pada pelbagai kepekatan substrat (0.033 hingga 0.123 g/mL), pH (4.0
hingga 6.0), dan suhu (40 hingga 70 °C) selama 180 min. Peningkatan parameter
pengekstrakan meningkatkan hasil pektin kepada nilai maksimum dan kemudian
menurun. Kepekatan substrat yang tinggi, suhu, pH dan pembentukan sebatian
pektin monomer pada tempoh hidrolisis yang panjang didapati mengurangkan
aktiviti enzim. Keadaan pengekstrakan yang disyorkan adalah menggunakan
kepekatan substrat 0.103 g/mL, pH 5.0 dan 55 °C selama 120 min untuk mencapai
hasil berat 10.80%. Pelaksanaan hasil komersial boleh memanfaat dalam
menyelesaikan masalah alam sekitar dan meningkatkan nilai ekonomi kulit buah
yang kaya dengan pektin dan lain-lain sisa pertanian.
Kata kunci: Hidrolisis; keadaan pengekstrakan;
kulit pisang; pektinase mentah
REFERENCES
Abdullah,
R., Jafer, A., Nisar, K., Kaleem, A., Iqtedar, M., Iftikhar, T., Saleem, F.
& Naz, S. 2018. Process optimization for pectinase production by locally
isolated fungal strain using submerged fermentation. Bioscience
Journal-Universidade Federal de Uberlândia 34(4): 1025-1032.
Ahele,
W. 2007. Enzymes in Industry: Production and Applications. 3rd ed.
Weinheim: Wiley-VCH Verlag GmbH & Co KGaA.
Ahmed,
A. & Sohail, M. 2020. Characterization of pectinase from Geotrichum candidum AA15 and its
potential application in orange juice clarification. Journal of King Saud
University–Science 32(1): 955-961.
Amin,
F., Bhatti, H.N., Bhatti, I.A. & Asgher, M. 2013. Utilization of wheat bran
for enhanced production of exo-polygalacturonase by Penicillium notatum using response surface methodology. Pakistan Journal of Agricultural
Sciences 50(3): 469-477.
Antov,
M.G. & Peri˘cin, D.M. 2001. Production of pectinases by Polyporus
squamosus in aqueous two-phase system. Enzyme and Microbial Technology 28(4-5):
467-472.
Baciu,
I.E. & Jördening, H.J. 2004. Kinetics of galacturonic acid release from
sugar-beet pulp. Enzyme and Microbial Technology 34(5): 505-512.
Barman,
S., Sit, N., Badwaik, L.S., Sankar, C. & Deka, S.C. 2015. Pectinase
production by Aspergillus niger using banana (Musa balbisiana)
peel as substrate and its effect on clarification of banana juice. Journal
of Food Science and Technology 52(6): 3579-3589.
Bélafi-Bakó,
K., Eszterle, M., Kiss, K., Nemestóthy, N. & Gubicza, L. 2007. Hydrolysis
of pectin by Aspergillus niger polygalacturonase in a membrane
bioreactor. Journal of Food Engineering 78(2): 438-442.
Bhaskar,
N., Benila, T., Radha, C. & Lalitha, R.G. 2008. Optimization of enzymatic
hydrolysis of visceral waste proteins of Catla (Catla catla) for
preparing protein hydrolysate using a commercial protease. Bioresource
Technology 99(2): 335-343.
Blanco,
P., Sieiro, C., Diaz, A. & Villa, T.G. 1994. Production and partial
characterization of an endopolygalacturonase from Saccharomyces cerevisiae. Canadian Journal of Microbiology 40(11): 974-977.
BPS
2018. Agricultural Statistics: Production of Fruits 2018. Statistics
Indonesia (BPS). Accessed 6 December 2019.
Castillo-Israel,
K.A.T., Baguio, S.F., Diasanta, M.D.B., Lizardo, R.C.M., Dizon, E.I. &
Mejico, M.I.F. 2015. Extraction and characterization of pectin from Saba banana
[Musa ‘saba’ (Musa acuminata x Musa balbisiana)] peel wastes: A
preliminary study. International Food Research Journal 22(1): 202-207.
Dinu,
D., Nechifor, M.T., Stoian, G., Costache, M. & Dinischiotu, A. 2007.
Enzymes with new biochemical properties in the pectinolytic complex produced by Aspergillus niger MIUG 16. Journal of Biotechnology 131(2):
128-137.
Food
Chemical Codex (FCC). 1996. IV monographs. Washington DC: National
Academy Press.
Galiotou-Panayotou,
M., Kapantai, M. & Kalantzi, O. 1997. Growth conditions of Aspergillus sp. ATHUM-3482 for polygalacturonase
production. Applied Microbiology and Biotechnology 47(4): 425-429.
Garna,
H., Emaga, T.H., Robert, C. & Paquot, M. 2011. New method for the
purification of electrically charged polysaccharides. Food Hydrocolloids 25(5):
1219-1226.
Girma,
E. & Worku, T. 2016. Extraction and characterization of pectin from
selected fruit peel waste. International Journal of Scientific and Research
Publication 6(2): 447-454.
Gnanasambandam,
R. & Proctor, A. 2000. Determination of pectin degree of
esterification by diffuse reflectance Fourier transform infrared
spectroscopy. Food Chemistry 68(3): 327-332.
Guo,
X., Meng, H., Zhu, S., Tang, Q., Pan, R. & Yu, S. 2016. Stepwise ethanolic
precipitation of sugar beet pectins from the acidic extract. Carbohydrate Polymers 136: 316-321.
Haslaniza,
H., Maskat, M.Y., Wan Aida, W.M. & Mamot, S. 2010. The effects of enzyme
concentration, temperature and incubation time on nitrogen content and degree
of hydrolysis of protein precipitate from cockle (Anadara granosa) meat
wash water. International Food Research Journal 17(1): 147-152.
Jeong,
H.S., Kim, H.Y., Ahn, S.H., Oh, S.C., Yang, I. & Choi, I.G. 2014.
Optimization of enzymatic hydrolysis conditions for extraction of pectin from
rapeseed cake (Brassica napus L.) using commercial enzymes. Food Chemistry 157: 332-338.
Kanmani,
P., Dhivya, E., Aravind, J. & Kumaresan, K. 2014. Extraction and analysis
of pectin from citrus peels: Augmenting the yield from Citrus limon using
statistical experimental design. Iranica Journal of Energy and Environment 5(3): 303-312.
Kashyap,
D.R., Vohra, P.K., Chopra, S. & Tewari, R. 2001. Applications of pectinases
in the commercial sector: A review. Bioresource Technology 77(3): 215-227.
Khairnar,
Y., Krishna, V.K., Boraste, A., Gupta, N., Trivedi, S., Patil, P., Gupta, G.,
Gupta, M., Jhadav, A., Mujapara, A., Joshi, B. & Mishra, D. 2009. Study of
pectinase production in submerged fermentation using different strains of Aspergillus
niger. International Journal of Microbiology Research 1(2): 13-17.
Khamsucharit,
P., Laohaphatanalert, K., Gavinlertvatana, P., Sriroth, K. & Sangseethong,
K. 2018. Characterization of pectin extracted from banana peels of different
varieties. Food Science and Biotechnology 27(3): 623-629.
Khatri,
B.P., Bhattarai, T., Shrestha, S. & Maharjan, J. 2015. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu conservation area, Gorkha, Nepal. SpringerPlus 4(1): 1-8.
Kumar,
A., Dutt, D. & Gautam, A. 2016. Production of crude enzyme from Aspergillus
nidulans AKB-25 using black gram residue as the substrate and its
industrial applications. Journal of Genetic Engineering and Biotechnology 14(1): 107-118.
Kumoro,
A.C., Mariana, S., Maurice, T.H., Hidayat, J.P., Ratnawati, R. & Retnowati,
D.S. 2020. Extraction of pectin from banana (Musa acuminata x balbisiana)
peel waste flour using crude enzymes secreted by Aspergillus niger. IOP
Conference Series: Material Science and Engineering 991(1): 012005.
Lampitt,
L.H., Money, R.W., Judge, B.E. & Urie, A. 1947. Pectin studies. part I.
method of purification. Journal of the Society of Chemical Industry 66(4):
121-124.
Lehninger,
A.L., Nelson, D.L. & Cox, M.M. 2017. Principles of Biochemistry. 4th
ed. New York: WH Freeman and Company.
Liew,
S.Q., Chin, N.L., Yusof, Y.A. & Sowndhararajan, K. 2015. Comparison of
acidic and enzymatic pectin extraction from passion fruit peels and its gel
properties. Journal of Food Process Engineering 39(5): 1-11.
Liu,
X. & Kokare, C. 2017. Microbial enzymes of use in industry. In Biocatalysis
and Industrial Applications, edited by Brahmachari, G., Demain, A.L.
& Adrio, J.L. Singapore: Academic Press. pp. 267-298.
Matus,
J. 1948. Untersuchungen uber die aktivitat der pectinase. EHT Zurich. Ph.D.
Thesis (Unpublished).
Mckendry,
P. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresource
Technology 83(1): 37-46.
Mesbahi,
G., Jamaliana, J. & Farahnaky, A. 2005. A comparative study on functional
properties of beet and citrus pectins in food systems. Food Hydrocolloids 19(4): 731-738.
Montecalvo,
J., Constantinides, S.M. &Yang, C.S.T. 1984. Enzymatic modification of fish
frame protein isolate. Journal of Food Science 49(5) 1305-1309.
Muhammad,
K., Zahari, N.I.M., Gannasin, S.P., Adzahan, N.M. & Bakar, J. 2014. High
methoxyl pectin from dragon fruit (Hylocereus polyrhizus) peel. Food
Hydrocolloids 42: 289-297.
Muthukumaran,
C., Loganathan, B., Somasundharum, H., Sivagurunathan, S., Govindasamy, S.,
Vinayaam, R. & Narasimhan, M.K. 2017. Pectin from muskmelon (Cucumis
melo var. reticulatus) peels: Extraction optimization and
physicochemical properties. 3 Biotech 7: 66.
Naggarajaiah,
S.B. & Prakash, J. 2011. Chemical composition and antioxidant potential of
peels from three varieties of banana. Asian Journal of Food and
Agro-Industry 4(1): 31-46.
Ovissipour,
M., Abedian, A., Motamedzadegan, A., Rasco, B.C., Safari, R. & Shahiri, H.
2009. The effect of enzymatic hydrolysis time and temperature on the properties
of protein hydrolysates from Persian sturgeon (Acipenser persicus)
viscera. Food Chemistry 115: 238-242.
Padam,
B.S., Tin, H.S., Chye, F.Y. & Abdullah, M.I. 2014. Banana by-products: An
under-utilized renewable food biomass with great potential. Journal of Food
Science and Technology 51(12): 3527-3545.
Palaniyappan,
M., Vijayagopal, V., Viswanathan, R. & Viruthagiri, T. 2009. Screening of
natural substrates and optimization of operating variables on the production of
pectinase by submerged fermentation using Aspergillus niger MTCC 281. African
Journal of Biotechnology 8(4): 682-686.
Pietrzyk,
P., Sojka, Z., Dzwigaj, S. & Che, M. 2007. Generation identification,
and reactivity of paramagnetic VO2 centers in zeolite BEA for model
studies of processes involving spin pairing, electron transfer, and oxygen
transfer. Journal of the American Chemical Society 129(46): 14174-14175.
Purcell,
J.M. & Fishman, M.L. 1987. Dissociation of dissolved pectins: Fourier-transform
infrared spectroscopy. Carbohydrate Research 159(2): 185-190.
Salwanee,
S., Wan Aida, W.M., Mamot, S., Maskat, M.Y. & Ibrahim, S. 2013. Effects of
enzyme concentration, temperature, pH and time on the degree of hydrolysis of
protein extract from viscera of Tuna (Euthynnus affinis) by using
Alcalase. Sains Malaysiana 42(3): 279-287.
Sandarani,
M.D.J.C. 2017. A review: Different extraction techniques of pectin. Journal
of Pharmacognosy & Natural Products 3(3): 1-5.
Scabio,
A., Fertonani, H.C.R., Schemin, M.H.C., Petkowicz, C.L.O., Carneiro, E.B.B.,
Nogueira, A. & Wosiacki, G. 2007. A model for pectin extraction from apple
pomace. Brazilian Journal of Food Technology 10(4): 259-265.
Seslija,
S., Veljovic, D.J., Kalagasidis, K.M., Stevanovic, J., Velickovic, S. &
Popovic, I. 2016. Cross-linking of highly methoxylated pectin with copper: The
specific anion influence. New Journal of Chemistry 40(2):
1618-1625.
Shen,
P. & Larter, R. 1994. Role of substrate inhibition kinetics in enzymatic
chemical oscillation. Biophysical Journal 67(4): 1414-1428.
Singthong,
J., Ningsanond, S., Cui, S.W. & Goff, H.D. 2005. Extraction and
physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids 19(5): 719-801.
Synytsya,
A., Čopı́ková, J., Matějka, P. & Machovič,
V.J.C.P. 2003. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydrate
Polymers 54(1): 97-106.
Tipson,
R.S., Isbell, H.S. & Stewart, J.E. 1959. Infrared absorption spectra of
some cyclic acetals of sugars. Journal
of Research of the National Bureau of Standards 62(6): 257-282.
Wang,
X., Chen, Q. & Lü, X. 2014. Pectin extracted from apple pomace and citrus
peel by subcritical water. Food Hydrocolloids 38: 129-137.
Yapo,
B.M. 2009. Pectin quantity, composition and physicochemical behaviour as
influenced by the purification process. Food Research International 42(8): 1197-1202.
Yapo,
B.M., Wathelet, B. & Paquot, M. 2007. Comparison of alcohol precipitation
and membrane filtration effects on sugar beet pulp pectin chemical features and
surface properties. Food Hydrocolloids 21(2): 245-255.
Zapata,
B., Balmaseda, J., Fregoso-Israel, E. & Torres-Garcia, E. 2009.
Thermo-kinetics study of orange peel in air. Journal of Thermal Analysis and
Calorimetry 98(1): 309-315.
Zhang,
P., Whistler, R.L., BeMiller, J.N. & Hamaker, B.R. 2005. Banana starch:
Production, physicochemical properties, and digestibility-a review. Carbohydrate
Polymers 59(4): 443-458.
*Corresponding
author; email: andrewkomoro@che.undip.ac.id
|