Sains Malaysiana 51(7)(2022): 2047-2059

http://doi.org/10.17576/jsm-2022-5107-09

 

Pectin Derived from Hydrolysis of Ripe Kepok Kuning Banana Peel Powder Employing Crude Pectinases Produced by Aspergillus niger

(Pektin Terhasil daripada Hidrolisis Serbuk Kulit Pisang Kepok Kuning Matang menggunakan Pektina Mentah yang Dihasilkan oleh Aspergillus niger)

 

ANDRI CAHYO KUMORO1,2*, SHINTA MARIANA1, TRI HANLY MAURICE1 & JEFRI PANDU HIDAYAT1,2,3

 

1Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, 50275 Semarang, Indonesia

2Institute of Food and Remedies BioMaterials, Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, 50275 Semarang, Indonesia

3Chemical Engineering Study Program, Department of Industrial and Process Technology, Institut Teknologi Kalimantan, Jl. Soekarno-Hatta Km. 15, Karang Joang, Balikpapan, 76127 Kalimantan Timur, Indonesia

 

Received: 13 August 2021/Accepted: 14 January 2022

 

REFERENCES

Banana fruits consumption generates about 35% weight of peel waste containing approximately 10.61 to 24 w/w% of pectin. Hence, improper banana peel waste management may induce various environmental and health issues. The objectives of this work were to study the effect of substrate concentration, pH, temperature, and duration on the yield of pectin extracted from enzymatic hydrolysis of banana peel powder. In this work, the crude enzymes were obtained via submerged fermentation of Kepok Kuning banana peel powder utilising Aspergillus niger and directly used without prior purification. Pectin extraction from banana peel powder was performed through hydrolysis using crude pectinases at various substrate concentrations (0.033 to 0.123 g/mL), pH (4.0 to 6.0), and temperature (40 to 70°C) for 180 min. The increase of extraction parameters enhanced the pectin yield to a maximum value and then declined. High substrate concentration, temperature, pH, and monomeric pectin compounds formation at long hydrolysis duration were found to reduce enzyme activity. A recommended extraction condition is using 0.103 g/mL substrate concentration, pH 5.0, and 55 °C for 120 min to achieve 10.80% weight yield. Commercial implementations of the results can be worthwhile in solving the environmental problem and enhance the economic value of pectin-rich fruit peels and other agricultural wastes.

 

Keywords: Banana peel; crude pectinase; extraction condition; hydrolysis

 

REFERENCES

Penggunaan buah pisang menjana kira-kira 35% berat sisa kulit yang mengandungi kira-kira 10.61 hingga 24 w/w% pektin. Oleh itu, pengurusan sisa kulit pisang yang tak wajar boleh menyebabkan pelbagai isu alam sekitar dan kesihatan. Objektif kertas ini adalah untuk mengkaji kesan kepekatan substrat, pH, suhu dan tempoh ke atas hasil pektin yang diekstrak daripada hidrolisis enzim serbuk kulit pisang. Dalam kajian ini, enzim mentah diperoleh melalui penapaian terendam serbuk kulit pisang Kepok Kuning menggunakan Aspergillus niger dan digunakan terus tanpa penulenan terlebih dahulu. Pengekstrakan pektin daripada serbuk kulit pisang dilakukan melalui hidrolisis menggunakan pektinase mentah pada pelbagai kepekatan substrat (0.033 hingga 0.123 g/mL), pH (4.0 hingga 6.0), dan suhu (40 hingga 70 °C) selama 180 min. Peningkatan parameter pengekstrakan meningkatkan hasil pektin kepada nilai maksimum dan kemudian menurun. Kepekatan substrat yang tinggi, suhu, pH dan pembentukan sebatian pektin monomer pada tempoh hidrolisis yang panjang didapati mengurangkan aktiviti enzim. Keadaan pengekstrakan yang disyorkan adalah menggunakan kepekatan substrat 0.103 g/mL, pH 5.0 dan 55 °C selama 120 min untuk mencapai hasil berat 10.80%. Pelaksanaan hasil komersial boleh memanfaat dalam menyelesaikan masalah alam sekitar dan meningkatkan nilai ekonomi kulit buah yang kaya dengan pektin dan lain-lain sisa pertanian.

 

Kata kunci: Hidrolisis; keadaan pengekstrakan; kulit pisang; pektinase mentah

 

REFERENCES

Abdullah, R., Jafer, A., Nisar, K., Kaleem, A., Iqtedar, M., Iftikhar, T., Saleem, F. & Naz, S. 2018. Process optimization for pectinase production by locally isolated fungal strain using submerged fermentation. Bioscience Journal-Universidade Federal de Uberlândia 34(4): 1025-1032.

Ahele, W. 2007. Enzymes in Industry: Production and Applications. 3rd ed. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA.

Ahmed, A. & Sohail, M. 2020. Characterization of pectinase from Geotrichum candidum AA15 and its potential application in orange juice clarification. Journal of King Saud University–Science 32(1): 955-961.

Amin, F., Bhatti, H.N., Bhatti, I.A. & Asgher, M. 2013. Utilization of wheat bran for enhanced production of exo-polygalacturonase by Penicillium notatum using response surface methodology. Pakistan Journal of Agricultural Sciences 50(3): 469-477.

Antov, M.G. & Peri˘cin, D.M. 2001. Production of pectinases by Polyporus squamosus in aqueous two-phase system. Enzyme and Microbial Technology 28(4-5): 467-472.

Baciu, I.E. & Jördening, H.J. 2004. Kinetics of galacturonic acid release from sugar-beet pulp. Enzyme and Microbial Technology 34(5): 505-512.

Barman, S., Sit, N., Badwaik, L.S., Sankar, C. & Deka, S.C. 2015. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. Journal of Food Science and Technology 52(6): 3579-3589.

Bélafi-Bakó, K., Eszterle, M., Kiss, K., Nemestóthy, N. & Gubicza, L. 2007. Hydrolysis of pectin by Aspergillus niger polygalacturonase in a membrane bioreactor. Journal of Food Engineering 78(2): 438-442.

Bhaskar, N., Benila, T., Radha, C. & Lalitha, R.G. 2008. Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology 99(2): 335-343.

Blanco, P., Sieiro, C., Diaz, A. & Villa, T.G. 1994. Production and partial characterization of an endopolygalacturonase from Saccharomyces cerevisiae. Canadian Journal of Microbiology 40(11): 974-977.

BPS 2018. Agricultural Statistics: Production of Fruits 2018. Statistics Indonesia (BPS). Accessed 6 December 2019.

Castillo-Israel, K.A.T., Baguio, S.F., Diasanta, M.D.B., Lizardo, R.C.M., Dizon, E.I. & Mejico, M.I.F. 2015. Extraction and characterization of pectin from Saba banana [Musa ‘saba’ (Musa acuminata x Musa balbisiana)] peel wastes: A preliminary study. International Food Research Journal 22(1): 202-207.

Dinu, D., Nechifor, M.T., Stoian, G., Costache, M. & Dinischiotu, A. 2007. Enzymes with new biochemical properties in the pectinolytic complex produced by Aspergillus niger MIUG 16. Journal of Biotechnology 131(2): 128-137.

Food Chemical Codex (FCC). 1996. IV monographs. Washington DC: National Academy Press.

Galiotou-Panayotou, M., Kapantai, M. & Kalantzi, O. 1997. Growth conditions of Aspergillus sp. ATHUM-3482 for polygalacturonase production. Applied Microbiology and Biotechnology 47(4): 425-429.

Garna, H., Emaga, T.H., Robert, C. & Paquot, M. 2011. New method for the purification of electrically charged polysaccharides. Food Hydrocolloids 25(5): 1219-1226.

Girma, E. & Worku, T. 2016. Extraction and characterization of pectin from selected fruit peel waste. International Journal of Scientific and Research Publication 6(2): 447-454.

Gnanasambandam, R. & Proctor, A. 2000. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry 68(3): 327-332.

Guo, X., Meng, H., Zhu, S., Tang, Q., Pan, R. & Yu, S. 2016. Stepwise ethanolic precipitation of sugar beet pectins from the acidic extract. Carbohydrate Polymers 136: 316-321.

Haslaniza, H., Maskat, M.Y., Wan Aida, W.M. & Mamot, S. 2010. The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. International Food Research Journal 17(1): 147-152.

Jeong, H.S., Kim, H.Y., Ahn, S.H., Oh, S.C., Yang, I. & Choi, I.G. 2014. Optimization of enzymatic hydrolysis conditions for extraction of pectin from rapeseed cake (Brassica napus L.)  using commercial enzymes. Food Chemistry 157: 332-338.

Kanmani, P., Dhivya, E., Aravind, J. & Kumaresan, K. 2014. Extraction and analysis of pectin from citrus peels: Augmenting the yield from Citrus limon using statistical experimental design. Iranica Journal of Energy and Environment 5(3): 303-312.

Kashyap, D.R., Vohra, P.K., Chopra, S. & Tewari, R. 2001. Applications of pectinases in the commercial sector: A review. Bioresource Technology 77(3): 215-227.

Khairnar, Y., Krishna, V.K., Boraste, A., Gupta, N., Trivedi, S., Patil, P., Gupta, G., Gupta, M., Jhadav, A., Mujapara, A., Joshi, B. & Mishra, D. 2009. Study of pectinase production in submerged fermentation using different strains of Aspergillus niger. International Journal of Microbiology Research 1(2): 13-17.

Khamsucharit, P., Laohaphatanalert, K., Gavinlertvatana, P., Sriroth, K. & Sangseethong, K. 2018. Characterization of pectin extracted from banana peels of different varieties. Food Science and Biotechnology 27(3): 623-629.

Khatri, B.P., Bhattarai, T., Shrestha, S. & Maharjan, J. 2015. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu conservation area, Gorkha, Nepal. SpringerPlus 4(1): 1-8.

Kumar, A., Dutt, D. & Gautam, A. 2016. Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications. Journal of Genetic Engineering and Biotechnology 14(1): 107-118.

Kumoro, A.C., Mariana, S., Maurice, T.H., Hidayat, J.P., Ratnawati, R. & Retnowati, D.S. 2020. Extraction of pectin from banana (Musa acuminata x balbisiana) peel waste flour using crude enzymes secreted by Aspergillus niger. IOP Conference Series: Material Science and Engineering 991(1): 012005.

Lampitt, L.H., Money, R.W., Judge, B.E. & Urie, A. 1947. Pectin studies. part I. method of purification. Journal of the Society of Chemical Industry 66(4): 121-124. 

Lehninger, A.L., Nelson, D.L. & Cox, M.M. 2017. Principles of Biochemistry. 4th ed. New York: WH Freeman and Company.

Liew, S.Q., Chin, N.L., Yusof, Y.A. & Sowndhararajan, K. 2015. Comparison of acidic and enzymatic pectin extraction from passion fruit peels and its gel properties. Journal of Food Process Engineering 39(5): 1-11. 

Liu, X. & Kokare, C. 2017. Microbial enzymes of use in industry. In Biocatalysis and Industrial Applications, edited by Brahmachari, G., Demain, A.L. & Adrio, J.L. Singapore: Academic Press. pp. 267-298.

Matus, J. 1948. Untersuchungen uber die aktivitat der pectinase. EHT Zurich. Ph.D. Thesis (Unpublished).

Mckendry, P. 2002. Energy production from biomass (part 1): Overview of biomass. Bioresource Technology 83(1): 37-46.

Mesbahi, G., Jamaliana, J. & Farahnaky, A. 2005. A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocolloids 19(4): 731-738.

Montecalvo, J., Constantinides, S.M. &Yang, C.S.T. 1984. Enzymatic modification of fish frame protein isolate. Journal of Food Science 49(5) 1305-1309.

Muhammad, K., Zahari, N.I.M., Gannasin, S.P., Adzahan, N.M. & Bakar, J. 2014. High methoxyl pectin from dragon fruit (Hylocereus polyrhizus) peel. Food Hydrocolloids 42: 289-297.

Muthukumaran, C., Loganathan, B., Somasundharum, H., Sivagurunathan, S., Govindasamy, S., Vinayaam, R. & Narasimhan, M.K. 2017. Pectin from muskmelon (Cucumis melo var. reticulatus) peels: Extraction optimization and physicochemical properties. 3 Biotech 7: 66.

Naggarajaiah, S.B. & Prakash, J. 2011. Chemical composition and antioxidant potential of peels from three varieties of banana. Asian Journal of Food and Agro-Industry 4(1): 31-46.

Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B.C., Safari, R. & Shahiri, H. 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry 115: 238-242.

Padam, B.S., Tin, H.S., Chye, F.Y. & Abdullah, M.I. 2014. Banana by-products: An under-utilized renewable food biomass with great potential. Journal of Food Science and Technology 51(12): 3527-3545.

Palaniyappan, M., Vijayagopal, V., Viswanathan, R. & Viruthagiri, T. 2009. Screening of natural substrates and optimization of operating variables on the production of pectinase by submerged fermentation using Aspergillus niger MTCC 281. African Journal of Biotechnology 8(4): 682-686.

Pietrzyk, P., Sojka, Z., Dzwigaj, S. & Che, M. 2007. Generation identification, and reactivity of paramagnetic VO2 centers in zeolite BEA for model studies of processes involving spin pairing, electron transfer, and oxygen transfer. Journal of the American Chemical Society 129(46): 14174-14175.

Purcell, J.M. & Fishman, M.L. 1987. Dissociation of dissolved pectins: Fourier-transform infrared spectroscopy. Carbohydrate Research 159(2): 185-190.

Salwanee, S., Wan Aida, W.M., Mamot, S., Maskat, M.Y. & Ibrahim, S. 2013. Effects of enzyme concentration, temperature, pH and time on the degree of hydrolysis of protein extract from viscera of Tuna (Euthynnus affinis) by using Alcalase. Sains Malaysiana 42(3): 279-287.

Sandarani, M.D.J.C. 2017. A review: Different extraction techniques of pectin. Journal of Pharmacognosy & Natural Products 3(3): 1-5.

Scabio, A., Fertonani, H.C.R., Schemin, M.H.C., Petkowicz, C.L.O., Carneiro, E.B.B., Nogueira, A. & Wosiacki, G. 2007. A model for pectin extraction from apple pomace. Brazilian Journal of Food Technology 10(4): 259-265.

Seslija, S., Veljovic, D.J., Kalagasidis, K.M., Stevanovic, J., Velickovic, S. & Popovic, I. 2016. Cross-linking of highly methoxylated pectin with copper: The specific anion influence. New Journal of Chemistry 40(2): 1618-1625.

Shen, P. & Larter, R. 1994. Role of substrate inhibition kinetics in enzymatic chemical oscillation. Biophysical Journal 67(4): 1414-1428.

Singthong, J., Ningsanond, S., Cui, S.W. & Goff, H.D. 2005. Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids 19(5): 719-801.

Synytsya, A., Čopı́ková, J., Matějka, P. & Machovič, V.J.C.P. 2003. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydrate Polymers 54(1): 97-106.

Tipson, R.S., Isbell, H.S. & Stewart, J.E. 1959. Infrared absorption spectra of some cyclic acetals of sugars.  Journal of Research of the National Bureau of Standards 62(6): 257-282.

Wang, X., Chen, Q. & Lü, X. 2014. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids 38: 129-137.

Yapo, B.M. 2009. Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Research International 42(8): 1197-1202.

Yapo, B.M., Wathelet, B. & Paquot, M. 2007. Comparison of alcohol precipitation and membrane filtration effects on sugar beet pulp pectin chemical features and surface properties. Food Hydrocolloids 21(2): 245-255.

Zapata, B., Balmaseda, J., Fregoso-Israel, E. & Torres-Garcia, E. 2009. Thermo-kinetics study of orange peel in air. Journal of Thermal Analysis and Calorimetry 98(1): 309-315.

Zhang, P., Whistler, R.L., BeMiller, J.N. & Hamaker, B.R. 2005. Banana starch: Production, physicochemical properties, and digestibility-a review. Carbohydrate Polymers 59(4): 443-458.

 

*Corresponding author; email: andrewkomoro@che.undip.ac.id

 

 

 

previous