Sains Malaysiana 51(7)(2022):
2147-2157
http://doi.org/10.17576/jsm-2022-5107-17
Repeated Administration of Low Dose
Isoprenaline on the Rat’s Cardiovascular System
(Administrasi Berulang Isoprenalina Dos Rendah pada Sistem Kardiovaskular Tikus)
RAJASEGAR ANAMALLEY1,4, LOGESWARY
RAJASSAGERAN1, YASAASWINI APPAROO1, MUHAMMAD HAFFIZ JAURI3,
YUSOF KAMISAH2, NURHANAN MURNI YUNOS3 & SATIRAH
ZAINALABIDIN1,*
1Programme of Biomedical
Science, Centre of Toxicology and Health Risk Study (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia
2Department of Pharmacology,
Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras Kuala Lumpur, Federal Territory,
Malaysia
3Natural Products Division,
Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia
4Faculty of Health and Life
Sciences, Management and Science University, University Drive, off Persiaran Olahraga, 40100 Shah Alam,
Selangor Darul Ehsan, Malaysia
Received: 21 September
2021/Accepted: 28 December 2021
Abstract
Isoprenaline (ISO) at high doses can cause
severe stress to myocardium resulting in an infarct-like necrosis in rats.
However, its effects at repeatedly low dose exposure on heart, kidney and aorta
are still unclear. Hence, this study was aimed to investigate the effects of
repeated administration of low dose ISO on the organs in rats by using
Langendorff-perfused isolated hearts, ELISA kits, qPCR and histopathology
techniques. Male Wistar rats (n=24) were randomly divided into three groups
which were given 5 or 10 mg/kg/day of ISO (ISO 5 and ISO 10, respectively), or
normal saline (control) subcutaneously for 14 days. Blood pressure was recorded
at day-0, 7 and 14. Heart, aorta, kidneys, and blood were then collected. ISO at both doses significantly increased the heart
weight and blood pressure (p<0.05), while the heart rate was significantly
decreased (p<0.05). ISO also increased serum troponin and NT-pro-BNP, and
decreased vascular relaxation dose-dependently. Group ISO 10 showed significantly
increased cardiomyocyte area and cardiac collagen content, as well as reduced
serum nitrite (p<0.05). However, ISO at both doses did not affect the
cardiac mechanical function, renal oxidative stress, inflammation, as well as
renal gene expressions of angiotensin-converting enzyme and angiotensin II type
1 receptor. In conclusion,
repeated low dose of ISO significantly causes myocardial injury and reduces
vascular function in rats. The findings imply that this rat model could be a
suitable model of heart injury without the complication of renal injury.
Keywords: β-adrenoceptor; cardiac
hypertrophy; fibrosis; isoprenaline; vascular fibrosis
Abstrak
Aruhan isoprenalina (ISO) pada dos
tinggi boleh menyebabkan tekanan yang teruk pada miokardium lalu mengakibatkan
nekrosis pada jantung tikus. Walau bagaimanapun, kesan pendedahan pada dos
rendah berulangan pada jantung, ginjal dan aorta masih belum jelas diketahui.
Oleh itu, penyelidikan ini bertujuan untuk mengkaji kesan pemberian ISO dos
rendah secara berulangan pada organ-organ tikus dengan menggunakan teknik
jantung terpisah yang diperfusi Langendorff, kit ELISA, qPCR dan histopatologi.
Tikus Wistar jantan (n=24) dibahagikan secara rawak kepada tiga kumpulan iaitu
5 atau 10 mg/kg/hari suntikan ISO (ISO 5 dan ISO 10), atau salina normal
(kawalan) secara subkutan selama 14 hari. Tekanan darah diambil pada hari ke-0,
7 dan 14. Organ jantung, aorta, ginjal dan darah kemudian dibedah. Hasil kajian
mendapati aruhan ISO pada kedua-dua dos tersebut telah meningkatkan berat
jantung dan tekanan darah dengan ketara (p<0.05), sementara kadar denyutan jantung pula menurun
dengan ketara (p<0.05). ISO juga
meningkatkan troponin serum dan NT-pro-BNP dan penurunan relaksasi vaskular.
Hanya ISO 10 berupaya mengaruh peningkatan kawasan kardiomiosit dan jumlah kolagen jantung,
serta penurunan nitrit serum (p<0.05). ISO pada
kedua-dua dos tersebut tidak pula mempengaruhi fungsi mekanikal jantung,
tekanan oksidatif ginjal, keradangan, serta ekspresi gen penukaran
enzim angiotensin dan reseptor angiotensin II Jenis 1. Kesimpulannya, aruhan dos rendah ISO yang berulang
menyebabkan kecederaan miokardium dan mengurangkan fungsi vaskular pada tikus.
Hasil kajian ini menunjukkan bahawa model tikus ini boleh dijadikan sebagai
satu model tikus dengan kegagalan jantung tanpa sebarang komplikasi pada buah
pinggang.
Kata kunci: β adrenoseptor;
fibrosis salur darah; kardiak hipertrofi; fibrosis; isoprenalina
REFERENCES
Ahmad, A., Sattar, M.Z., Rathore, H.A., Khan,
S.A., Lazhari, M.A., Hashmi, F., Abdullah, N.A. & Johns, E.J. 2012. Impact
of isoprenaline and caffeine on development of left ventricular hypertrophy and
renal hemodynamic in Wistar Kyoto rats. Acta
Poloniae Pharmaceutica 72(5): 1015-1026.
Ali, S.S., Mohamed, S.F.A., Rozalei, N.H.,
Boon, Y.W. & Zainalabidin, S. 2019. Anti-fibrotic actions of Roselle
extract in rat model of myocardial infarction. Cardiovascular Toxicology 19(1): 72-81.
Allawadhi,
P., Khurana, A., Sayed, N., Kumari, P. & Godugu, C. 2018.
Isoproterenol‐induced cardiac ischemia and fibrosis: Plant‐based
approaches for intervention. Phytotherapy
Research 32(10): 1908-1932.
Casserly,
B. & Klinger, J. 2010. The clinical utility of brain natriuretic peptide in
pulmonary arterial hypertension. PVRI Review 2(2): 85.
Chan, J.S.,
Wang, T.T., Zhang, S.L., Chen, X. & Carrière, S.
2000. Catecholamines and angiotensinogen gene expression in kidney proximal
tubular cells. Molecular and Cellular
Biochemistry 212(1): 73-79.
Che, Y.,
Shen, D.F., Wang, Z.P., Jin, Y.G., Wu, Q.Q., Wang,
S.S. & Yuan, Y. 2019. Protective role of berberine in isoprenaline-induced
cardiac fibrosis in rats. BMC Cardiovascular Disorders 19(1): 1-11.
Colombo, P.C., Ganda, A., Lin, J., Onat, D., Harxhi, A., Iyasere, J.E.,
Uriel, N. & Cotter, G. 2012. Inflammatory activation: Cardiac, renal, and
cardio-renal interactions in patients with the cardiorenal syndrome. Heart Failure Reviews 17(2): 177-190.
Combet, S., Miyata, T.,
Moulin, P., Pouthier, D., Goffin,
E. & Devuyst, O. 2000. Vascular proliferation and
enhanced expression of endothelial nitric oxide synthase in human peritoneum
exposed to long-term peritoneal dialysis. Journal
of the American Society of Nephrology 11(4): 717-728.
Dalal, S., Foster, C.R.,
Das, B.C., Singh, M. & Singh, K. 2012. Β-adrenergic receptor
stimulation induces endoplasmic reticulum stress in adult cardiac myocytes: Role
in apoptosis. Molecular and Cellular
Biochemistry 364(1): 59-70.
De Ponte, M.C., Casare, F.A.M., Costa-Pessoa, J.M., Cardoso, V.G., Malnic,
G., Mello-Aires, M., Volpini, R.A., Thieme, K. & Oliveira-Souza, M. 2017.
The role of Β-Adrenergic overstimulation in the early stages of renal injury. Kidney and Blood Pressure Research 42(6): 1277-1289.
Govindasami, S., Uddandrao, V.V., Raveendran, N. & Sasikumar, V. 2020.
Therapeutic potential of biochanin-A against isoproterenol-induced myocardial
infarction in rats. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly
Current Medicinal Chemistry-Cardiovascular & Hematological Agents) 18(1): 31-36.
Hasić, S., Jadrić, R., Kiseljaković, E., Mornjaković,
Z. & Winterhalter-Jadrić, M. 2007. Troponin T and histological characteristics of rat myocardial infarction
induced by Isoproterenol. Bosnian Journal
of Basic Medical Sciences 7(3): 212-217.
Hoogwerf, B.J., Laine,
D.C. & Greene, E. 1986. Urine C-peptide and creatinine (Jaffe method)
excretion in healthy young adults on varied diets: Sustained effects of varied
carbohydrate, protein, and meat content. The
American Journal of Clinical Nutrition 43(3): 350-360.
Huang, D., Ke, J., Zhao, A., Yang, Z., Liang, D., Pan, J. & Chen,
J. 2014. Establishment and evaluation of isoproterenol induced chronic heart
failure and cardiac remodeling model in rats: An
experimental study. International Journal
of Cardiovascular and Cerebrovascular Disease 2(5): 45-50.
Katsarou, M.S., Karathanasopoulou, A.,
Andrianopoulou, A., Desiniotis, V., Tzinis, E., Dimitrakis, E. & Drakoulis,
N. 2018. Beta 1, beta 2 and beta 3 adrenergic receptor gene polymorphisms in a
southeastern European population. Frontiers
in Genetics 9: 560.
Krenek, P., Kmecova, J., Kucerova, D., Bajuszova, Z., Musil, P., Gazova, A. & Kyselovic, J. 2009. Isoproterenol‐induced heart
failure in the rat is associated with nitric oxide‐dependent functional
alterations of cardiac function. European
Journal of Heart Failure 11(2): 140-146.
Lumsden,
N.G., Khambata, R.S. & Hobbs, A.J. 2010. C-type
natriuretic peptide (CNP): Cardiovascular roles and potential as a therapeutic
target. Current Pharmaceutical Design 16(37): 4080-4088.
Magid, R., Murphy, T. & Galis, Z.S. 2003.
Expression of matrix metalloproteinase-9 in endothelial cells is differentially
regulated by shear stress role of c-Myc. Journal
of Biological Chemistry 278(35): 32994-32999.
Manjunatha, S., Shaik,
A.H., Al Omar, S.Y., Mohammad, A. & Kodidhela,
L.D. 2020. Combined cardio-protective ability of syringic acid and resveratrol
against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and
TNF-α pathways. Scientific Reports 10(1): 1-13.
Mohammed Yusof, N.L., Zainalabidin, S., Mohd Fauzi, N. & Budin, S.B.
2018. Hibiscus sabdariffa (Roselle) polyphenol-rich extract averts
cardiac functional and structural abnormalities in type 1 diabetic rats. Applied Physiology, Nutrition, and
Metabolism 43(12): 1224-1232.
Mozayani, A. & Raymon, L. 2003. Handbook
of Drug Interactions: A Clinical and Forensic Guide. Springer Science &
Business Media.
Nichtova, Z., Novotova, M., Kralova, E. & Stankovicova, T. 2012. Morphological and functional
characteristics of models of experimental myocardial injury induced by
isoproterenol. Gen. Physiol. Biophys. 31(2): 141-151.
Palipoch, S. 2013. A review of oxidative stress in acute kidney injury: Protective
role of medicinal plants-derived antioxidants. African Journal of Traditional,
Complementary and Alternative Medicines 10(4): 88-93.
Patlolla, A.K., Kumari,
S.A., Madhusudhanachary, P., Turner, T. & Tchounwou, P.B. 2018. Biochemical and histopathological
evaluation of Al2O3 nanomaterials in kidney of Wistar
rats. Current Topics in Biochemical
Research 19: 1-12.
Rajendran,
P., Rengarajan, T., Thangavel,
J., Nishigaki, Y., Sakthisekaran,
D., Sethi, G. & Nishigaki,
I. 2013. The vascular endothelium and human diseases. International Journal of Biological Sciences 9(10): 1057-1069.
Si, L.Y.N.,
Yusof, K., Ramalingam, A., Lim, Y.C., Budin, S.B.
& Zainalabidin, S. 2017. Roselle supplementation
prevents nicotine-induced vascular endothelial dysfunction and remodelling in
rats. Applied Physiology, Nutrition, and
Metabolism 42: 765-772.
Yu, F., Kamada, H., Niizuma, K., Endo, H.
& Chan, P.H. 2008. Induction of MMP-9 expression and endothelial injury by
oxidative stress after spinal cord injury. Journal
of Neurotrauma 25(3): 184-195.
Zhao, L., Wu,
D., Sang, M., Xu, Y., Liu, Z. & Wu, Q. 2017. Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by
suppressing inflammation and oxidative stress through inhibiting NF-κB and JAK/STAT signaling pathways in rats. International Immunopharmacology 48: 102-109.
Zhong, J., Guo, D., Chen, C.B., Wang, W., Schuster, M., Loibner, H.,
Penninger, J.M., Scholey, J.W., Kassiri, Z. & Oudit, G.Y. 2011. Prevention
of angiotensin II–mediated renal oxidative stress, inflammation, and fibrosis
by angiotensin-converting enzyme 2. Hypertension 57(2): 314-322.
Zhou, R., Ma,
P., Xiong, A., Xu, Y., Wang, Y. & Xu, Q. 2017.
Protective effects of low‐dose rosuvastatin on
isoproterenol‐induced chronic heart failure in rats by regulation of
DDAH‐ADMA‐NO pathway. Cardiovascular
Therapeutics 35(2): e12241.
*Corresponding author;
email: satirah@ukm.edu.my
|