Sains Malaysiana 52(1)(2023): 165-174

http://doi.org/10.17576/jsm-2023-5201-13

 

FTIR-Based Metabolomics for Characterization of Antioxidant Activity of Different Parts of Sesbania grandiflora Plant

(Metabolomik Berasaskan FTIR untuk Pencirian Aktiviti Antioksidan Bahagian Berbeza Tumbuhan Sesbania grandiflora)

 

NOVIANY NOVIANY1,*, M. HANIF AMRULLOH1, MOHAMAD RAFI2, BAMBANG IRAWAN3, WISNU ANANTA KUSUMA4, SUTOPO HADI1, R. SUPRIYANTO1, RISA NOFIANI5, M. HAZWAN HUSSIN6 & SURIPTO DWI YUWONO1

 

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, 35145, Lampung, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, West Java, Indonesia

3Department of Biology, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, 35145, Lampung, Indonesia

4Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, West Java, Indonesia

5Department of Chemistry, University of Tanjungpura, Pontianak, 78124 Indonesia

6School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

Received: 12 December 2021/Accepted: 29 September 2022

 

Abstract

Sesbania grandiflora, one of the flowering plants with great potential as a source of natural antioxidants because it contains chemicals such as tannin, phenolics, and flavonoids. However, there has been no extensive investigation on the antioxidant activity of isolated from different parts of this plant.  This study aims to investigate the correlation between antioxidant activity and secondary metabolites extracted from three different parts (leaves, stem barks, and roots) of S. grandiflora plant using Fourier-transform infrared spectroscopy (FTIR) based metabolomics approach. The FTIR is a very useful technique for identifying the functional groups present in the mixtures, while antioxidant assay provides the base to select the part of the plant as the most potential source of antioxidant. The antioxidant properties were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), and potassium ferricyanide reduction method. The multivariate data - analyses using Principal Component Analysis (PCA) and Partial Least Square (PLS) were conducted to compare the distribution of metabolites extracted from different parts of the S. grandiflora plant investigated. The PLS was performed to evaluate the relationship between the components of the extracts obtained from different parts of the plant and their antioxidant activities. The results exhibited that antioxidant activities of the extract of the stem barks, and roots are higher than that of the extract of the leaves. Also, the PLS model indicated that the functional group absorption data were significantly correlated with the IC50 values of antioxidant activity. Subsequently, based on the results of PLS ​​analysis displayed that C=C, C=O, and along with C-O functional groups are proposed as the main contributors to the antioxidant activity of the extracts tested. The extracts of different parts were grouped using PCA analysis with a total of principal components (PC) of 94%.

 

Keywords: Antioxidant property; metabolomics approach; secondary metabolites; Sesbania grandiflora

 

Abstrak

Sesbania grandiflora, salah satu tumbuhan berbunga yang berpotensi besar sebagai sumber antioksidan semula jadi kerana mengandungi bahan kimia seperti tanin, fenol dan flavonoid. Walau bagaimanapun, tiada kajian meluas mengenai aktiviti antioksidan terpencil daripada bahagian berlainan tumbuhan ini. Penyelidikan ini bertujuan untuk mengkaji korelasi antara aktiviti antioksidan dan metabolit sekunder yang diekstrak daripada tiga bahagian berbeza (daun, kulit batang dan akar) tumbuhan S. grandiflora menggunakan pendekatan metabolomik berasaskan spektroskopi transformasi Fourier inframerah (FTIR). FTIR ialah teknik yang sangat berguna untuk mengenal pasti kumpulan berfungsi yang terdapat dalam campuran, manakala ujian antioksidan menyediakan asas untuk memilih bahagian tumbuhan sebagai sumber antioksidan yang paling berpotensi. Sifat antioksidan telah ditentukan menggunakan 2,2-difenil-1-picrilhidrazil (DPPH), asid 2,2'-azino-bis-3-etilbenztiazolina-6-sulfonik (ABTS) dan kaedah pengurangan kalium feriksianida. Data multivariat - Analisis menggunakan Analisis Komponen Utama (PCA) dan Kuasa Dua Terkecil Separa (PLS) telah dijalankan untuk membandingkan taburan metabolit yang diekstrak daripada bahagian berlainan tumbuhan S. grandiflora yang dikaji. PLS dijalankan untuk menilai hubungan antara komponen ekstrak yang diperoleh daripada bahagian tumbuhan yang berlainan dan aktiviti antioksidannya. Keputusan menunjukkan bahawa aktiviti antioksidan ekstrak kulit batang dan akar adalah lebih tinggi daripada ekstrak daun. Juga, model PLS menunjukkan bahawa data penyerapan kumpulan berfungsi secara signifikan berkorelasi dengan nilai IC50 aktiviti antioksidan. Selepas itu, berdasarkan keputusan analisis PLS menunjukkan bahawa C=C, C=O dan bersama-sama dengan kumpulan berfungsi C-O dicadangkan sebagai penyumbang utama kepada aktiviti antioksidan ekstrak yang diuji. Ekstrak bahagian yang berbeza dikumpulkan menggunakan analisis PCA dengan jumlah komponen utama (PC) sebanyak 94%.

 

Kata kunci: Metabolit sekunder; pendekatan metabolomik; Sesbania grandiflora; sifat antioksidan

 

REFERENCES

Adámez, J.D., Samino, E.G., Sánchez, E.V. & González-Gómez, D. 2012. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 24(1-2): 136-141.

Bittencourt, M.L.F., Ribeiro, P.R., Franco, R.L.P., Hilhorst, H.W.M., de Castro R.D. & Fernandez, L.G. 2015. Metabolite profiling, antioxidant and antibacterial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds. Food Research International 76: 449-457.

Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200.

Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M.& Morelli, I. 2001. Antioxidant principles from Bauhinia tarapotensis. Journal of Natural Products 64: 892-895.

Cambiaghi, A., Ferrario, M. & Masseroli, M. 2017. Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration. Briefings in Bioinformatics 18: 498-510.

Coulibaly, A.Y., Hashim, R., Sulaiman, S.F., Sulaiman, O., Ang, L.Z.P. & Ooi, K.L. 2014. Bioprospecting medicinal plants for antioxidant components. Asian Pacific Journal of Tropical Medicine 7(Suppl 1): S553-S559.

Easmin, S., Sarker, M.Z.I., Ghafoor, K., Ferdosh, S., Jaffri, J., Ali, M.E., Mirhosseini, Al-Juhaimi, F.Y., Perumal, V. & Khatib, A. 2017. Rapid investigation of α-glucosidase inhibitory activity of Phaleria macrocarpa extracts using FTIR-ATR based fingerprinting. Journal of Food and Drug Analysis 25: 306-315.

Greenwell, M. & Rahman, P.K.S.M. 2015. Medicinal plants: Their use in anticancer treatment. International Journal of Pharmaceutical Sciences and Research 6: 4103-4112.

Gülçin, I. 2020. Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology 94: 651-715.

Guo, S.C., Yu, S., Qian, Y., Hu, M.H., Shan, M.Q., Chen, P.D. & Li, S.F.Y. 2017. Correlation of antioxidant activity and volatile oil chemical components from Schizonepeta tenuifolia herbs by chemometric methods. International Journal of Food Properties 20: S1082-S1092.

Hasan, N., Osman, H., Mohamad, S., Keng Chong, W., Awang, K. & Zahariluddin, A.S.M. 2012. The chemical components of Sesbania grandiflora roots and their antituberculosis activity. Pharmaceuticals 5: 882-889.

He, S. & Yan, X. 2013. From resveratrol to its derivatives: New sources of natural antioxidant. Current Medicinal Chemistry 20(8): 1005-1017.

Huang, W-J., Zhang, X. & Chen, W.W. 2016. Role of oxidative stress in Alzheimer's disease (Review). Biomedical Reports 4: 519-522.

Jayaprakasha, G.K., Singh, R.P. & Sakariah, K.K. 2001. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry 73: 285-290.

Lister, I.N.E., Ginting, C.N., Girsang, E., Armansyah, A., Marpaung, H.H., Sinaga, A.P.F., Handayani, R.A.S. & Rizal, R. 2020. Antioxidant properties of Red Betel (Piper crocatum) leaf extract and its compounds. Journal of Natural Remedies 19: 198-205.

Manna, P. & Jain, S.K. 2015. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metabolic Syndrome and Related Disorders 13: 423-444.

Nani, A., Murtaza, B., Sayed Khan, A., Khan, N.A. & Hichami, A. 2021. Antioxidant and anti-inflammatory potential of polyphenols contained in mediterranean diet in obesity: Molecular mechanisms. Molecules 26: 985.

Noviany, N., Samadi, A., Carpenter, E.L., Abugrain, M.E., Hadi, S., Purwitasari, N., Indra, G., Indra, A. & Mahmud, T. 2021. Structural revision of sesbagrandiflorains a and b, and synthesis and biological evaluation of 6-methoxy-2-arylbenzofuran derivatives. Journal of Natural Medicines 75: 66-75. 

Noviany, Osman, H., Mohamad, S. & Hadi, S. 2020a. Antibacterial activity of extracts and compounds from the roots of Sesbania grandiflora (Leguminosae). Research Journal of Chemistry and Environment 24(8): 108-113.

Noviany, N., Samadi, A., Yuliyan, N., Hadi, S., Aziz, M., Purwitasari, N., Mohamad, S., Ismail, N.N., Gable, K.P. & Mahmud, T. 2020b. Structure characterization and biological activity of 2-arylbenzofurans from an Indonesian plant, Sesbania grandiflora (L.) Pers. Phytochemistry Letters 35: 211-215.

Noviany, N., Nurhidayat, A., Hadi, S., Suhartati, T., Aziz, M., Purwitasari, N. & Subasman, I. 2018. Sesbagrandiflorain a and b: Isolation of two new 2-arylbenzofurans from the stem bark of Sesbania grandiflora. Natural Product Research 32: 2558-2564.

Noviany, Osman, H., Chong, W.K., Awang, K. & Manshoor, N. 2012. Isolation and characterisation of l,l’-binaphthalene-2,2’-diol, a new biaryl natural product from Sesbania grandiflora root. Journal of Basic and Applied Sciences8: 253-256.

Nurmaida,  Darusman, L.K., Rafi, M. & Heryanto, R. 2018.  Metabolite profiling of Tabat Barito (Ficus deltoidea) using UPLC-QTOF-MS/MS. The Journal of Pure and  Applied Chemistry Research 7(2): 100-108.

Pavia, D.L., Lampman, G.M. & Kriz, D.Z. 2010. Introduction to Spectroscopy. Brooks/Cole. Thomson Learning, Inc.

Petlevski, R., Flajs, D., KaloCera, Z. & Končić, M.Z. 2013. Composition and antioxidant activity of aqueous and ethanolic Pelargonium radula extracts. South African Journal of Botany 85: 17-22.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231-1237.

Rodríguez-García, C.M., Ruiz-Ruiz, J.C., Peraza-Echeverría, L., Peraza-Sánchez, S.R., Torres-Tapia, L.W., Pérez-Brito, D., Tapia-Tussell, R., Herrera-Chalé, F.G., Segura-Campos, M.R., Quijano-Ramayo, A., Ramón-Sierra, J.M. & Ortiz-Vázquez, E. 2019. Antioxidant, antihypertensive, anti-hyperglycemic, and antimicrobial activity of aqueous extracts from twelve native plants of the Yucatan coast. PLoS ONE 14(3): e0213493.

Rohaeti, E., Karunina, F. & Rafi, M. 2021. FTIR-based fingerprinting and chemometrics for rapid investigation of antioxidant activity from Syzygium polyanthum extracts. Indonesian Journal of Chemistry 21: 128-136.

Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T.& Sochor, J. 2015. Bioactive compounds and antioxidant activity in different types of Berries. International Journal of Molecular Sciences 16: 24673-24706.

Umar, A.H., Ratnadewi, D., Rafi, M. & Sulistyaningsih, Y.C. 2021. Untargeted metabolomics analysis using FTIR and UHPLC-Q-Orbitrap HRMS of two curculigo species and evaluation of their antioxidant and α-glucosidase inhibitory activities. Metabolites 11: 42.

 

*Corresponding author; email: noviany@fmipa.unila.ac.id

 

 

 

previous