Sains Malaysiana 52(1)(2023): 95-105

http://doi.org/10.17576/jsm-2023-5201-08

 

Effect of Swamp Eel (Monopterus albus) Plasma on The Quality of Tilapia (Oreochromis mossambicus) Surimi

(Kesan Plasma Belut Paya (Monopterus albus) terhadap Kualiti Surimi Tilapia (Oreochromis mossambicus))

 

RODIANA NOPIANTI1,3, EKOWATI CHASANAH2, SUKARNO1 & MAGGY THENAWIDJAJA SUHARTONO1,*

 

1Department of Food Science and Technology, Faculty of Agricultural Technology, Bogor Agricultural University (IPB University), Dramaga, Bogor 16002, Indonesia

2National Agency for Research and Innovation (BRIN)

3Department of Fisheries Product Technology, Faculty of Agriculture, Sriwijaya University, Indralaya, Ogan Ilir, South Sumatera, 30662, Indonesia

 

Received: 27 June 2022/Accepted: 29 September 2022

 

Abstract

The effects of crude plasma and ethanol-extracted of swamp eel plasma at different concentrations (0, 0.25, 0.5, 0.75, 1, 1.5, 2 mg/g) as inhibitor protease in the quality of tilapia (Oreochromis mossambicus) surimi were investigated. The parameters analyzed were gel strength, expressible moisture, whiteness, microstructure, protein solubility, hydrolysis pattern of surimi by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, percent inhibition, and zymogram. The results showed that ethanol-extracted plasma could maintain gel strength, expressible moisture, microstructure, protein solubility, and percent inhibition in lysis of tilapia surimi from protease activity that caused formation of modori structure better than crude plasma. The whiteness decreased as the concentration of plasma used increased. SDS-PAGE for hydrolysis pattern analysis showed that the effectiveness of crude plasma as a protease inhibitor decreased as the concentration increased. There was an increase in the inhibition of protease in the ethanol-extracted plasma at a concentration of 1.5 mg/g. It suggested that the crude plasma contained an internal protease enzyme that might interfere with the reduced myosin intensity.

 

Keywords: Crude plasma; modori; plasma ethanol fraction; swamp eel

 

Abstrak

Kesan plasma mentah belut paya dan diekstrak etanol pada kepekatan berbeza (0, 0.25, 0.5, 0.75, 1, 1.5, 2 mg/g) sebagai perencat protease dalam kualiti surimi tilapia (Oreochromis mossambicus) telah dikaji. Parameter yang dianalisis ialah kekuatan gel, lembapan boleh nyata, keputihan, struktur mikro, keterlarutan protein, corak hidrolisis surimi oleh elektroforesis gel natrium dodesil sulfat-poliakrilamida, perencatan peratus dan zimogram. Keputusan menunjukkan bahawa plasma yang diekstrak etanol boleh mengekalkan kekuatan gel, kelembapan yang boleh diungkapkan, struktur mikro, keterlarutan protein dan peratus perencatan dalam lisis surimi tilapia daripada aktiviti protease yang menyebabkan pembentukan struktur modori lebih baik daripada plasma mentah. Keputihan berkurangan apabila kepekatan plasma yang digunakan meningkat. SDS-PAGE untuk analisis pola hidrolisis menunjukkan bahawa keberkesanan plasma mentah sebagai perencat protease menurun apabila kepekatan meningkat. Terdapat peningkatan dalam perencatan protease dalam plasma yang diekstrak etanol pada kepekatan 1.5 mg/g. Ia mencadangkan bahawa plasma mentah mengandungi enzim protease dalaman yang mungkin mengganggu keamatan miosin yang dikurangkan.

 

Kata kunci: Belut paya; modori; plasma mentah; serpihan etanol plasma

 

REFERENCES

Barret, A.J. 1981. α2 - Macroglobulin. Methods in Enzymology 80: 737-754.

Cohn, E.J., Strong, L.E., Hughes, W.L., Mulford, D.J., Ashworth, J.N., Melin, M. & Taylor, H.L. 1946. Preparation and properties of serum and plasma proteins. IV. A system for separation into fractions of the proteins and lipoprotein components of biological tissues and fluids 1a, b, c, d. Journal of the American Chemical Society 68(3): 459-475.

Denizli, A. 2011. Plasma fractionation: Conventional and chromatographic methods for albumin purification. Hacettepe Journal of Biology and Chemistry 39(4): 315-341.

Benjakul, S. & Visessanguan, W. 2000. Pig plasma protein: Potential use as proteinase inhibitor for surimi manufacture; inhibitory activity and the active components. Journal of the Science of Food and Agriculture 80: 1351-1356.

Bradford, M.M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Analytical Biochemistry 72: 248-254.

Fowler, M. & Park, J.W. 2015a. Salmon blood plasma: Effective inhibitor of protease-laden Pacific whiting surimi and salmon mince. Food Chemistry 176: 448-454.

Fowler, M. & Park, J.W. 2015b. Effect of salmon plasma protein on Pacific whiting surimi gelation under various ohmic heating conditions. LWT - Food Science and Technology 61(2): 309-315.

Hu, Y., Ji, R., Jiang, H., Zhang, J., Chen, J. & Ye, X. 2012. Participation of cathepsin L in modori phenomenon in carp (Cyprinus carpio) surimi gel. Food Chemistry 134(4): 2014-2020.

Jaziri, A.A., Shapawi, R., Mokhtar, R.A.M., Noordin, W.N.M. & Huda, N. 2021. Tropical marine fish surimi: Utilisation and potential as functional food application. Food Reviews International https://doi.org/10.1080/87559129.2021.2012794

Jiang, T., Miyazaki, R., Hirasaka, K., Yuan, P.X., Yoshida, A., Hara, K. & Taniyama, S. 2019. Effect of blood deposition phenomenon on flesh quality of yellowtail (Seriola quinqueradiata) during storage. Journal of Texture Studies 50: 325-331.

Kaewudom et al. 2013.

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685.

Li, D.K., Lin, H. & Kim, S.M. 2008. Effect of rainbow trout (Oncorhynchus mykiss) plasma protein on the gelation of Alaska Pollock (Theragra chalcogramma) surimi. Journal of Food Science 73(4): 227-234.

Lowry, O.H., Rosbrough, N.J., Farr, A.L. & Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193: 265-275.

Mishra, R. 2022. Handbook on Fish Processing and Preservation. Boca Raton: Taylor & Francis.

Nopianti, R., Herpandi, Baehaki, A., Rinto, Rhidowati, S. & Suhartono, M.T. 2019. Protease inhibitory activity and protein analysis of catfish (Pangasius hypopthalmus) and swamp eel (Monopterus albus) blood plasma. Pertanika Journal of Tropical Agricultural Science 42(1): 155-164.

Nopianti, N., Huda, N., Norayati, I., Fazilah, A. & Easa, A.M. 2012. Cryoprotective effect of low-sweetnees additives on protein denaturation of threadfin bream surimi (Nemipterus spp.) during frozen storage. Cyta-Journal of Food 10(3): 243-250.

Park, J.W. 2005. Code of practice for frozen surimi. In Surimi and Surimi Seafood, 2nd ed., edited by Park, J.W. Boca Raton: Taylor and Francis Group. pp. 869-885.

Park, J.W. 2000. Ingredient technology and formulation development. In Surimi and Surimi Seafood, edited by Park, J.W. New York: Marcel Dekker Inc. pp. 343-391.

Park, J.W., Graves, D., Draves, R. & Yongsawatdigul, J. 2013. Manufacture of Surimi: Harvest to frozen block. In Surimi and Surimi Seafood. 3rd ed., edited by Park, J.W. Boca Raton: CRC Press. pp. 55-96.

Payne, K. 2019. Freshwater Fish EcologyEdtech: Britania Raya. p. 315.

Rawdkuen, S., Benjakul, S., Visessanguan, W. & Lanier, T.C. 2007. Cystein proteinase inhibitor from chicken plasma: Fractionation, characterization and autolysis inhibition of fish myofibrillar proteins. Food Chemistry 101(4): 1647-1657.

Shand, P.J. 2012. Water immobilizationin low-fat meat batters. In Quality Attributes of Muscle Foods, edited by Ho, C.T., Shahidi, F. & Xiong, Y.L. New York: Springer. pp. 339-341.

Weerasinghe, V.C., Morrissey, M.T. & An, H. 1996. Characterization of active components in food-grade proteinase inhibitors for surimi manufacture. Journal of Agriculture and Food Chemistry 44(9): 2584-2590.

 

*Corresponding author; email: mthenawidjaja@yahoo.com

 

 

previous