Sains Malaysiana 52(1)(2023): 95-105
http://doi.org/10.17576/jsm-2023-5201-08
Effect of Swamp Eel (Monopterus albus) Plasma on The Quality of Tilapia
(Oreochromis mossambicus)
Surimi
(Kesan
Plasma Belut Paya (Monopterus albus)
terhadap Kualiti Surimi Tilapia (Oreochromis
mossambicus))
RODIANA NOPIANTI1,3, EKOWATI CHASANAH2, SUKARNO1 & MAGGY
THENAWIDJAJA SUHARTONO1,*
1Department of Food Science and Technology,
Faculty of Agricultural Technology, Bogor Agricultural University (IPB
University), Dramaga, Bogor 16002, Indonesia
2National Agency
for Research and Innovation (BRIN)
3Department of Fisheries Product
Technology, Faculty of Agriculture, Sriwijaya University, Indralaya, Ogan Ilir, South Sumatera, 30662, Indonesia
Received: 27 June
2022/Accepted: 29 September 2022
Abstract
The effects of
crude plasma and ethanol-extracted of
swamp eel plasma at different concentrations (0, 0.25, 0.5, 0.75, 1, 1.5, 2
mg/g) as inhibitor protease in the quality of tilapia (Oreochromis mossambicus) surimi were investigated. The parameters
analyzed were gel strength, expressible moisture, whiteness, microstructure,
protein solubility, hydrolysis pattern of surimi by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis, percent inhibition, and zymogram.
The results showed that ethanol-extracted plasma could maintain gel strength, expressible moisture, microstructure,
protein solubility, and percent inhibition in lysis of tilapia surimi from
protease activity that caused formation of modori structure better than crude plasma. The whiteness decreased as the
concentration of plasma used increased. SDS-PAGE for hydrolysis pattern
analysis showed that the effectiveness of crude plasma as a protease inhibitor
decreased as the concentration increased. There was an increase in the
inhibition of protease in the ethanol-extracted plasma at a concentration of 1.5 mg/g. It suggested that the crude plasma
contained an internal protease enzyme that might interfere with the reduced
myosin intensity.
Keywords: Crude
plasma; modori; plasma ethanol fraction; swamp eel
Abstrak
Kesan plasma mentah belut paya dan diekstrak etanol pada kepekatan berbeza
(0, 0.25, 0.5, 0.75, 1, 1.5, 2 mg/g) sebagai perencat protease dalam kualiti surimi
tilapia (Oreochromis mossambicus)
telah dikaji. Parameter yang dianalisis ialah kekuatan gel, lembapan
boleh nyata, keputihan, struktur mikro, keterlarutan protein, corak hidrolisis
surimi oleh elektroforesis gel natrium dodesil sulfat-poliakrilamida,
perencatan peratus dan zimogram. Keputusan menunjukkan
bahawa plasma yang diekstrak etanol boleh mengekalkan kekuatan gel, kelembapan
yang boleh diungkapkan, struktur mikro, keterlarutan protein dan peratus
perencatan dalam lisis surimi tilapia daripada aktiviti protease yang
menyebabkan pembentukan struktur modori lebih baik daripada plasma mentah. Keputihan berkurangan apabila kepekatan plasma yang digunakan meningkat. SDS-PAGE untuk analisis pola hidrolisis menunjukkan bahawa keberkesanan
plasma mentah sebagai perencat protease menurun apabila kepekatan meningkat. Terdapat peningkatan dalam perencatan protease dalam plasma yang diekstrak
etanol pada kepekatan 1.5 mg/g. Ia mencadangkan
bahawa plasma mentah mengandungi enzim protease dalaman yang mungkin mengganggu
keamatan miosin yang dikurangkan.
Kata kunci: Belut paya; modori; plasma mentah; serpihan etanol plasma
REFERENCES
Barret, A.J. 1981. α2 - Macroglobulin. Methods
in Enzymology 80: 737-754.
Cohn, E.J., Strong, L.E., Hughes, W.L.,
Mulford, D.J., Ashworth, J.N., Melin, M. &
Taylor, H.L. 1946. Preparation and properties of serum and plasma proteins. IV.
A system for separation into fractions of the proteins and lipoprotein
components of biological tissues and fluids 1a, b, c, d. Journal of the American Chemical Society 68(3): 459-475.
Denizli, A. 2011. Plasma fractionation:
Conventional and chromatographic methods for albumin purification. Hacettepe Journal of Biology and Chemistry 39(4):
315-341.
Benjakul, S. & Visessanguan,
W. 2000. Pig plasma protein: Potential use as proteinase inhibitor for surimi
manufacture; inhibitory activity and the active components. Journal of the
Science of Food and Agriculture 80: 1351-1356.
Bradford, M.M. 1976. Rapid and sensitive
method for quantitation of microgram quantities of protein utilizing principle
of protein dye binding. Analytical
Biochemistry 72: 248-254.
Fowler, M. & Park, J.W. 2015a. Salmon
blood plasma: Effective inhibitor of protease-laden Pacific whiting surimi and
salmon mince. Food Chemistry 176:
448-454.
Fowler, M. & Park, J.W. 2015b. Effect
of salmon plasma protein on Pacific whiting surimi gelation under various ohmic
heating conditions. LWT - Food Science
and Technology 61(2): 309-315.
Hu, Y., Ji, R., Jiang, H., Zhang, J.,
Chen, J. & Ye, X. 2012. Participation of cathepsin L in modori phenomenon in carp (Cyprinus carpio) surimi gel. Food
Chemistry 134(4): 2014-2020.
Jaziri, A.A., Shapawi, R., Mokhtar, R.A.M., Noordin,
W.N.M. & Huda, N. 2021. Tropical marine fish surimi: Utilisation and potential as functional food application. Food Reviews International https://doi.org/10.1080/87559129.2021.2012794
Jiang, T., Miyazaki, R., Hirasaka, K., Yuan, P.X., Yoshida, A., Hara, K. & Taniyama, S. 2019. Effect of blood deposition phenomenon on
flesh quality of yellowtail (Seriola quinqueradiata) during storage. Journal of Texture
Studies 50: 325-331.
Kaewudom et al. 2013.
Laemmli, U.K. 1970. Cleavage of structural
proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685.
Li, D.K., Lin, H. & Kim, S.M. 2008.
Effect of rainbow trout (Oncorhynchus
mykiss) plasma protein on the gelation of Alaska Pollock (Theragra chalcogramma)
surimi. Journal of Food Science 73(4): 227-234.
Lowry, O.H., Rosbrough,
N.J., Farr, A.L. & Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193:
265-275.
Mishra, R. 2022. Handbook on Fish
Processing and Preservation. Boca Raton: Taylor & Francis.
Nopianti, R., Herpandi, Baehaki, A., Rinto, Rhidowati, S. & Suhartono,
M.T. 2019. Protease inhibitory activity and protein analysis of catfish (Pangasius hypopthalmus)
and swamp eel (Monopterus albus) blood
plasma. Pertanika Journal of Tropical Agricultural Science 42(1): 155-164.
Nopianti, N., Huda, N., Norayati,
I., Fazilah, A. & Easa,
A.M. 2012. Cryoprotective effect of low-sweetnees additives on protein denaturation of threadfin bream surimi (Nemipterus spp.) during frozen storage. Cyta-Journal of Food 10(3): 243-250.
Park, J.W. 2005. Code of practice for frozen surimi. In Surimi and Surimi
Seafood, 2nd ed., edited by Park, J.W. Boca Raton: Taylor and Francis
Group. pp. 869-885.
Park, J.W. 2000. Ingredient technology and formulation development. In Surimi
and Surimi Seafood, edited by Park, J.W. New York: Marcel Dekker Inc. pp.
343-391.
Park, J.W., Graves, D., Draves,
R. & Yongsawatdigul, J. 2013. Manufacture of Surimi: Harvest to frozen
block. In Surimi and Surimi Seafood. 3rd ed., edited by Park,
J.W. Boca Raton: CRC Press. pp. 55-96.
Payne, K. 2019. Freshwater Fish
Ecology. Edtech: Britania Raya. p. 315.
Rawdkuen, S., Benjakul, S., Visessanguan, W.
& Lanier, T.C. 2007. Cystein proteinase inhibitor
from chicken plasma: Fractionation, characterization and autolysis inhibition
of fish myofibrillar proteins. Food Chemistry 101(4): 1647-1657.
Shand,
P.J. 2012. Water immobilizationin low-fat meat batters. In Quality Attributes of Muscle Foods, edited
by Ho, C.T., Shahidi, F. & Xiong, Y.L. New
York: Springer. pp. 339-341.
Weerasinghe,
V.C., Morrissey, M.T. & An, H. 1996. Characterization of active components
in food-grade proteinase inhibitors for surimi manufacture. Journal of
Agriculture and Food Chemistry 44(9): 2584-2590.
*Corresponding author;
email: mthenawidjaja@yahoo.com
|