Sains Malaysiana 52(2)(2023):
513-531
http://doi.org/10.17576/jsm-2023-5202-15
UHPLC-Q-Orbitrap HRMS-Based Metabolomic Show
Biological Pathways Involved in Rice (Oryza sativa L.) under Fe Toxicity
Stress
(Metabolomik UHPLC-Q-Orbitrap Berasaskan HRMS menunjukkan
Laluan Biologi Terlibat untuk Beras (Oryza
sativa L.) di bawah Tekanan Ketoksikan Fe)
TURHADI TURHADI1,2,
HAMIM HAMIM3, MUNIF GHULAMAHDI4 & MIFTAHUDIN
MIFTAHUDIN3,*
1Plant Biology Graduate Program, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Kampus IPB Dramaga 16680 Bogor, West Java, Indonesia
2Department
of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya,
Jl. Veteran, Malang 65415, East Java, Indonesia
3Department
of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Kampus
IPB Dramaga 16680 Bogor, West Java, Indonesia
4Department
of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Kampus
IPB Dramaga 16680 Bogor, West Java, Indonesia
Received: 19 July 2022/Accepted: 30
November 2022
Abstract
The iron (Fe) toxicity stress is still a serious problem in rice cultivation, especially on land
with high Fe content. The Fe toxicity stress affects various complex physiological aspects of plants. The metabolomic analysis
using LC-MS is expected to provide information about rice's metabolism regulation under Fe toxicity stress. The objective of this study was to show the biological pathway signature in rice
after exposure to Fe toxicity stress using
UHPLC-Q-Orbitrap HRMS-based metabolomic analysis. The two rice varieties, i.e., IR64 (Fe-sensitive) and Pokkali (Fe-tolerant) were analyzed their metabolites using UHPLC-Q-Orbitrap HRMS. The metabolite profiles of both
varieties were analyzed using MetaboAnalyst 5.0
software. The results showed that Fe
toxicity stress affected the metabolite profile in both root and shoot tissues of two rice varieties. A
number of 102 metabolites were detected in root and shoot
tissues of rice. The comprehensive univariate and
multivariate analyses showed that 1-aminocyclopropane-1-carboxylate (ACC) in
shoot tissues and galactose in root tissues was suggested as metabolite markers
for Fe tolerance character of rice var. Pokkali. The genes encoded the enzymes involved in
biosynthetic pathway of both metabolite markers could be a target to be
explored for Fe toxicity tolerance in rice.
Keywords: Galactose;
metabolism; metabolite markers; 1-aminocyclopropane-1-carboxylate
Abstrak
Tekanan ketoksikan besi (Fe) masih menjadi masalah serius dalam penanaman
padi, terutamanya pada tanah yang mempunyai kandungan Fe yang tinggi. Tekanan ketoksikan Fe mempengaruhi pelbagai aspek fisiologi tumbuhan yang
kompleks. Analisis metabolomik menggunakan LC-MS dijangka
memberikan maklumat tentang peraturan metabolisme beras di bawah tekanan
ketoksikan Fe. Objektif kajian ini adalah untuk menunjukkan pengenalan
laluan biologi dalam beras selepas terdedah kepada tekanan ketoksikan Fe
menggunakan analisis metabolomik berasaskan UHPLC-Q-Orbitrap HRMS. Kedua-dua varieti beras, iaitu IR64 (Fe-sensitif) dan Pokkali
(Fe-toleransi) telah dianalisis metabolitnya menggunakan UHPLC-Q-Orbitrap HRMS. Profil metabolit kedua-dua jenis varieti dianalisis menggunakan perisian
MetaboAnalyst 5.0. Keputusan
menunjukkan bahawa tekanan ketoksikan Fe mempengaruhi profil metabolit dalam
kedua-dua tisu akar dan pucuk kedua-dua varieti padi. Sejumlah 102 metabolit telah dikesan dalam tisu akar dan pucuk padi. Analisis komprehensif univariat dan multivariat menunjukkan bahawa
1-aminosiklopropana-1-karboksilat (ACC) dalam tisu pucuk dan galaktosa dalam
tisu akar telah dicadangkan sebagai penanda metabolit untuk sifat toleransi Fe
bagi beras var. Pokkali. Gen yang mengekod
enzim yang terlibat dalam laluan biosintetik kedua-dua penanda metabolit boleh
menjadi sasaran untuk diterokai untuk toleransi ketoksikan Fe dalam beras.
Kata kunci: Galaktosa; metabolisme; penanda metabolit; 1-aminosiklopropana-1-karboksilat
REFERENCES
Adams, D.O. & Yang, S.F. 1979. Ethylene biosynthesis: Identification
of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion
of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76(1): 170-174.
Albano, J.P.,
Miller, W.B. & Halbrooks, M.C. 1996. Iron toxicity stress causes bronze
speckle, a specific physiological disorder of marigold (Tagetes erecta L.). J. Amer. Soc. Hort. Sci. 121(3): 430-437.
Audebert, A. & Sahrawat,
K.L. 2000. Mechanisms for iron toxicity tolerance in lowland rice. J. Plant Nutr. 23(11&12): 1877-1885.
Aung, M.S.
& Masuda, H. 2020. How does rice defend against excess iron?: Physiological and molecular mechanisms. Front. Plant. Sci. 11: 1102.
Aung, M.S.,
Masuda, H., Kobayashi, T. & Nishizawa, N.K. 2018. Physiological and
transcriptomic analysis of responses to different levels of iron excess stress
in various rice tissues. J. Soil Sci. Plant Nutr. 64(3): 370-385.
Bashir, K., Hanada, K., Shimizu, M., Seki, M., Nakanishi, H. &
Nishizawa, N.K. 2014. Transcriptomic analysis of rice in response to iron
deficiency and excess. Rice 7(18): 1-15.
Begum, M.C.,
Islam, M.S., Islam, M., Amin, R., Parvez, M.S. & Kabir, A.H. 2016.
Biochemical and molecular responses underlying differential arsenic tolerance
in rice (Oryza sativa L.). Plant Physiol. Biochem. 104: 266-277.
Chang, Y., Zhao, C., Zhu, Z., Wu, Z., Zhou, J., Zhao, Y., Lu, X. &
Xu, G. 2012. Metabolic profiling based on LC/MS to evaluate unintended
effects of transgenic rice with cry1Ac and sck genes. Plant Mol. Biol. 78: 477-487.
De Dorlodot, S., Lutts, S.
& Bertin, P. 2005. Effects of ferrous iron
toxicity on the growth and mineral composition of an interspecific rice. J. Plant Nutr. 28: 1-20.
Do
Amaral, M.N., Arge, L.W.P., Benitez, L.C., Danielowski, R., da Silveira, S.F., da Rosa Farias, D., de
Oliveira, A.C., da Maia, L.C. & Braga, E.J.B. 2016. Comparative
transcriptomics of rice plants under cold, iron, and salt stresses. Funct. Integr. Genomics. 16(5): 567-579.
Dong, X., Chen,
W., Wang, W., Zhang, H., Liu, X. & Luo, J. 2014. Comprehensive profiling
and natural variation of flavonoids in rice. J.
Integrative Plant Biol. 56(9): 876-886.
Engel, K., Asch, F. & Becker, M. 2012. Classification
of rice genotypes based on their mechanisms of adaptation to iron toxicity. J.
Plant Nutr. Soil. Sci. 175: 871-881.
Finatto,
T., de Oliveira, A.C., Chaparro, C., da Maia, L.C., Farias,
D.R., Woyann, L.G., Mistura, C.C., Soares-Bresolin,
A.P., Llauro,
C., Panaud,
O. & Picault,
N. 2015. Abiotic stress and genome dynamics: Specific genes and transposable elements
response to iron excess in
rice. Rice 8(13): 1-18.
Gupta, P. &
De, B. 2017. Metabolomics analysis of rice responses to salinity stress
revealed elevation of serotonin, and gentisic acid
levels in leaves of tolerant varieties. Plant Signaling Behav.
12(7): e1335845.
Hall, R.D.
& Hardy, N.W. 2012. Plant Metabolomics:
Methods and Protocol. New York: Humana Press.
Hill, C.B.
& Roessner, U. 2013. Metabolic profiling of plants by GC-MS. In The Handbook of Plant Metabolomics, edited by Weckwerth,
W. & Kahl, G. Weinheim: Wiley-VCH Verlag GmBH & Co.
Hu, C., Shi,
J., Quan, S., Cui, B., Kleessen, S., Nikoloski, Z., Tohge, T.,
Alexander, D., Guo, L., Lin, H., Wang, J., Cui, X., Rao, J., Luo, Q., Zhao, X., Fernie, A.R. & Zhang, D. 2014. Metabolic
variation between japonica and indica rice cultivars
as revealed by non-targeted metabolomics. Sci.
Rep. 4: 5067.
Hu, C., Tohge, T., Chan, S.A., Song, Y., Rao, J., Cui, B., Lin, H.,
Wang, L., Fernie, A.R., Zhang, D. & Shi, J. 2016.
Identification of conserved and diverse metabolic shifts during rice grain
development. Sci. Rep. 6: 20942.
Jorge, T.F.,
Rodrigues, J.A., Caldana, C., Schmidt, R., van Dongen, J.T., Thomas-Oates, J. & Antonio, C. 2016. Mass
spectrometry-based plant metabolomics: Metabolite response to abiotic stress. Mass
Spec. Rev. 35: 620-649.
Jung, E.S.,
Lee, S., Lim, S.H., Ha, S.H., Liu, K.H. & Lee, C.H. 2013. Metabolite
profiling of the short-term responses of rice leaves (Oryza sativa cv. Ilmi) cultivated under
different LED lights and its correlations with antioxidant activities. Plant Sci. 210: 61-69.
Kabir, A.H.,
Begum, M.C., Haque, A., Amin, R., Swaraz, A.M.,
Haider, S.A., Paul, N.K. & Hossain, M.M. 2016. Genetic variation in Fe
toxicity tolerance is associated with the regulation of translocation and
chelation of iron along with antioxidant defence in
shoots of rice. Funct. Plant Biol. 43(11): 1070-1081.
Khabaz-Saberi, H., Rengel, Z., Wilson, R.
& Setter, T.L. 2010. Variation for tolerance to high
concentration of ferrous iron (Fe2+) in Australian hexaploid wheat. Euphytica 172(2): 275-283.
Kovačević, V., Vukadinović, V.
& Bertić, B. 1988. Excessive iron and aluminum uptake and nutritional stress in corn (Zea mays L.) plants. J.
Plant Nutr. 11(6-11):
1263-1272.
Kusano, M., Yang, Z., Okazaki, Y.,
Nakabayashi, R., Fukushima, A. & Saito, K. 2015. Using metabolomic
approaches to explore chemical diversity in rice. Mol. Plant. 8: 58-67.
Lim, D.K., Mo,
C., Lee, J.H., Long, N.P., Dong, Z., Li, J., Lim, J. & Kwon, S.W. 2018a.
The integration of multi-platform MS-based metabolomics and multivariate analysis
for the geographical origin discrimination of Oryza sativa L. J. Food Drug
Anal. 26: 769-777.
Lim, D.K.,
Long, N.P., Mo, C., Dong, Z., Lim, J. & Kwon, S.W. 2018b. Optimized mass
spectrometry-based metabolite extraction and analysis for the geographical
discrimination of white rice (Oryza
sativa L.): A method comparison study. J.
AOAC Intern. 101(2): 498-506.
Lucassen,
E.C.H.E.T., Smolders, A.J.P. & Roelofs, J.G.M.
2000. Increased groundwater levels cause iron toxicity in Glyceria fluitans(L.). Aquatic Bot. 66: 321-327.
Mahender, A.,
Swamy, B.P.M., Anandan, A. & Ali, J. 2019.
Tolerance of iron deficient and -toxic soil conditions in rice. Plants 8: 31.
Navarro-Reig, M., Jaumot,
J., Piña, B., Moyano, E., Galceran,
M.T. & Tauler, R. 2017. Metabolomic
analysis of the effects of cadmium and copper treatment in Oryza sativa L. using untargeted liquid chromatography coupled to
high resolution mass spectrometry and all-ion fragmentation. Metallomics 9(6):
660-675.
Navarro-Reig, M., Jaumot, J., García-Reiriz, A. & Tauler, R. 2015.
Evaluation of changes induced in rice metabolome by Cd and Cu exposure using
LC-MS with XCMS and MCR-ALS data analysis strategies. Anal. Bioanal. Chem. 407: 8835-8847.
Nugraha, Y., Ardie,
S.W., Ghulamahdi, M., Suwarno & Aswidinnoor, H. 2015. Nutrient culture media with
agar is effective for early and rapid screening of iron toxicity tolerance in
rice. J. Crop Sci. Biotech. 19(1): 61-70.
Obata, T. & Fernie, A.R. 2012. The use of metabolomics to dissect
plant responses to abiotic stresses. Cell
Mol. Life Sci. 69: 3225-3243.
Oh, M., Park, S., Kim, H., Choi, G.J. & Kim, S.H. 2021. Application
of UPLC-QTOF-MS based untargeted metabolomics in identification of metabolites
induced in pathogen-infected rice. Plants (Basel) 10(2): 213.
Polko, J.K. & Kieber, J.J. 2019.
1-Aminocyclopropane 1-carboxylic acid and its emerging role as an ethylene
independent growth regulator. Front. Plant Sci. 10: 1602.
Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I., Lutts, S. & Lefèvre, I.
2012. Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant
Cell Environ. 35(10): 1837-1859.
Sangwan, N.S., Tiwari, P., Mishra, S.K., Yadav, R.K.,
Tripathi, S., Kushwaha, A.K. & Sangwan, R.S.
2015. Plant metabolomics: An overview
of technology platforms for applications in metabolism. In PlantOmics: The Omics of Plant Science, edited by Barh, D., Khan, M. & Davies, E. New Delhi: Springer.
Schellingen, K., Van Der Straeten, D., Vandenbussche, F., Prinsen, E.,
Remans, T., Vangronsveld, J. & Cuypers, A. 2014. Cadmium-induced ethylene production and responses in Arabidopsis
thaliana rely on ACS2 and ACS6 gene expression. BMC Plant
Biol. 14: 214.
Snowden, R.E.D. & Wheeler, B.D. 1993. Iron toxicity to fen plant species. J. Ecol. 81:
35-46.
Stein, R.J., Duarte, G.L., Scheunemann, L., Spohr,
M.G., de Araújo Júnior, A.T., Ricachenevsky, F.K.,
Rosa, L.M.G., Zanchin, N.I.T., Santos, R.P. &
Fett, J.P. 2019. Genotype variation in rice (Oryza sativa L.) tolerance
to Fe toxicity might be linked to root cell wall lignification. Front. Plant
Sci. 10: 746.
Turhadi, Miftahudin, Hamim & Ghulamahdi, M. 2021. The effectiveness of nutrient culture solutions with
agar addition as an evaluation media of rice under iron toxicity conditions. Bioeduscience 5(1): 24-29.
Turhadi, T., Hamim,
H., Ghulamahdi, M. & Miftahudin,
M. 2019. Iron toxicity-induced physiological and metabolite profile variations
among tolerant and sensitive rice varieties. Plant Signal Behav. 14(12): 1682829.
Turhadi, T., Hamim, H., Ghulamahdi, M. & Miftahudin,
M. 2018. Morpho-physiological responses of
rice genotypes and its clustering under hydroponic Fe toxicity conditions. Asian J. Agri. Biol. 6(4): 495-505.
Vanderstraeten, L. & Van Der Straeten, D. 2017. Accumulation and transport of
1-aminocyclopropane-1-carboxylic acid (ACC) in plants: Current status,
considerations for future research and agronomic applications. Front. Plant
Sci. 8: 38.
Wang, Y., Xu, L., Shen, H., Wang, J., Liu, W., Zhu, X., Wang, R., Sun,
X. & Liu, L. 2015. Metabolomic analysis with GC-MS to reveal potential
metabolites and biological pathways involved in Pb & Cd stress response of
radish roots. Sci. Rep. 5: 18296.
Widodo,
Patterson, J.H., Newbigin, E., Tester, M., Bacic, A. & Roessner, U.
2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in
salinity tolerance. J. Exp. Bot. 60(14):
4089-4103.
Wu, L.B., Shhadi, M.Y., Gregorio, G., Matthus, E., Becker, M. & Frei, M. 2014. Genetic and
physiological analysis of tolerance to acute iron
toxicity in rice. Rice 7(1): 8.
Wu, L.B, Ueda, Y., Lai, S.K. & Frei, M. 2016. Shoot
tolerance mechanisms to iron toxicity in rice (Oryza sativa L.). Plant Cell
Environ. 40(4): 570-584.
Xia, J. & Wishart,
D.S. 2016. Using metaboAnalyst 3.0 for
comprehensive metabolomics data analysis. Curr. Protoc.
Bioinformatics 55: 14.10.1-14.10.91.
Xiao, R., Ma,
Y., Zhang, D. & Qian, L. 2018. Discrimination of conventional and organic
rice using untargeted LC-MS based metabolomics. J. Cereal Sci. 82: 73-81.
Yancey, P.H.
2005. Organic osmolytes as compatible, metabolic and counteracting
cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208(15):
2819-2830.
Yoon, G.M. & Kieber, J.J. 2013. 1-Aminocyclopropane-1-carboxylic
acid as a signalling molecule in plants. AoB PLANTS 5: plt017.
Yoshida, S., Forno, D.A., Cock, J.H. & Gomez, K.A. 1976. Laboratory
Manual for Physiological Studies of Rice. Manila: The International Rice
Research Institute.
*Corresponding
author; email: miftahudin@apps.ipb.ac.id
|