| Sains Malaysiana 48(10)(2019): 
              2135–2141  http://dx.doi.org/10.17576/jsm-2019-4810-08     Characterization of the Antimicrobial Substances 
              Produced by Nibribacter radioresistens (Pencirian Bahan Antimikrob yang Dihasilkan oleh Nibribacter radioresistens)   SAM WOONG 
              KIM1, 
              YEON 
              JO 
              HA1, 
              SANG 
              WAN 
              GAL1, 
              KYU 
              PIL 
              LEE2, 
              KYU 
              HO 
              BANG1, 
              MYUNG-SUK 
              KANG3, 
              JOO-HONG 
              YEO3, 
              HEE-SUN 
              YANG3, 
              SEUNG-HO 
              JEON4 
              & WOO YOUNG BANG3*   1Gene Analysis Center, 
              Gyeongnam National University of Science 
              & Technology, Jinju 52725, Republic of Korea   2Laboratory of Physiology, 
              College of Veterinary Medicine, Chungnam 
              National University, Daejeon 34134, Republic of Korea    3National Institute 
              of Biological Resources (NIBR), Environmental Research Complex, 
              Incheon 22689, Republic of Korea    4Sunchon National 
              University, 255, Jungang-ro, Suncheon-si, 57922, Republic of Korea   Diserahkan: 14 Disember 
              2018/Diterima: 16 September 2019   ABSTRACT This study characterized the 
              antimicrobial substances produced by the radiation-resistant bacterium 
              Nibribacter radioresistens. 
              The antimicrobial substances showed activity against Salmonella 
              Gallinarum, pathogenic Escherichia coli, Bacillus 
              cereus, Streptococcus iniae, and Saccharomyces 
              cerevisiae. The substances showed higher activity against Gram-positive 
              bacteria than against Gram-negative bacteria and yeast. N. radioresistens showed the best growth rate in LB 
              liquid medium at 37ºC; however, production 
              of the antimicrobial substances was not associated with growth. 
              Since the activity of the antimicrobial substances was affected 
              by proteinase K and EDTA, the substances were presumed 
              to be antimicrobial peptides (AMPs). The antimicrobial substances 
              produced by N. radioresistens were 
              unstable at higher temperatures and in acidic and basic pH ranges, 
              and most of the activity was attributed to either low (<3 kDa) 
              or high molecular weight (>30 kDa) 
              molecules. When S. Gallinarum was 
              treated with the antimicrobial substances, the cell destruction 
              was acted on the cell envelope. Therefore, we concluded that N. radioresistens produces broad-spectrum and very unstable 
              antimicrobial substances that mostly consist of low- and high-molecular 
              weight peptides.   Keywords: AMPs; 
              antimicrobial activity; growth curve; Nibribacter radioresistens; protease; radiation-resistant bacteria   ABSTRAK Kajian ini dicirikan bahan 
              antimikrob yang dihasilkan 
              oleh bakteria Nibribacter 
              radioresistens. Bahan 
              antimikrob menunjukkan aktiviti menentang Salmonella 
              Gallinarum, patogen 
              Escherichia coli, Bacillus cereus, Streptococcus 
              iniae dan 
              Saccharomyces cerevisiae. Bahan yang menunjukkan 
              aktiviti yang lebih tinggi terhadap bakteria gram-positif berbanding dengan bakteria gram-negatif dan yis. N. radioresistens menunjukkan 
              kadar pertumbuhan 
              terbaik dalam cecair 
              medium lb pada 
              37ºC; walau bagaimanapun, pengeluaran bahan antimikrob tidak dikaitkan dengan pertumbuhan. Oleh kerana aktiviti bahan antimikrob terjejas oleh proteinase k dan edta, bahan 
              tersebut dianggap 
              sebagai antimikrob peptida (AMPs). Bahan 
              antimikrob yang dihasilkan 
              oleh N. radioresistens tidak stabil pada suhu yang lebih tinggi dan 
              berada dalam 
              julat berasid dan 
              ph asas, dan sebahagian besar aktiviti itu disebabkan sama ada rendah 
              (<3 kda) atau 
              berat molekul tinggi 
              (>30 kda). Apabila 
              S. Gallinarum 
              dirawat dengan 
              bahan antimikrob, pemusnahan sel telah berlaku 
              pada sampul 
              sel. Oleh itu, kami menyimpulkan bahawa N. radioresistens menghasilkan 
              bahan antimikrob 
              yang luas dan sangat 
              tidak stabil 
              yang kebanyakannya terdiri daripada peptida berat molekul rendah 
              dan tinggi.   Kata kunci: Aktiviti antimikrob; AMPs; bakteria rintangan-sinaran; keluk 
              pertumbuhan; Nibribacter radioresisten; 
              sprotease RUJUKAN  Azevedo, A.C., 
              Bento, C.B., Ruiz, J.C., Queiroz, M.V. 
              & Mantovani, H.C. 2015. Distribution and genetic diversity of 
              bacteriocin gene clusters in rumen microbial 
              genomes. Appl. Environ. Microbiol. 
              81: 7290-7304.  Bulet, P. 
              & Stocklin, R. 2005. Insect antimicrobial peptides: structures, 
              properties and gene regulation. Protein Pept. 
              Lett. 12: 3-11.  Cabrera, M.A. & Blamey, J.M. 2018. Biotechnological applications 
              of archaeal enzymes from extreme environments. Biol 
              Res. 51: 37.  Chen, G.Q. & Jiang, X.R. 2018. Next generation industrial biotechnology 
              based on extremophilic bacteria. Curr. Opin. Biotechnol. 50: 94100. Demain, A.L. 1998. Induction of microbial 
              secondary metabolism. Int. Microbiol. 
              1: 259-264.  Dimopoulos, G., Richman, A., Müller, H.M. & 
              Kafatos, F.C. 1997. Molecular immune responses 
              of the mosquito Anopheles gambiae to 
              bacteria and malaria parasites. Proc. Natl. Acad. Sci. USA. 94: 
              11508-11513.  Dopson, M., Ni, G. & Sleutels, T.H. 2016. Possibilities for extremophilic 
              microorganisms in microbial electrochemical systems. FEMS Microbiol. Rev. 40: 164-181.  Easton, D.M., Nijnik, 
              A., Mayer, M.L. & Hancock, R.E. 2009. Potential of immunomodulatory 
              host defense peptides as novel anti-infectives. 
              Trends Biotechnol. 27: 582-590.  Garsa, A.K., Kumariya, 
              R., Sood, S.K., Kumar, A. & Kapila, 
              S. 2014. Bacteriocin production and different 
              strategies for their recovery and purification. Probiotics Antimicrob. Proteins 6: 47-58.  Goh, H.F. & Philip, K. 2015. Purification 
              and characterization of bacteriocin produced 
              by Weissella confusa 
              A3 of dairy origin. PLoS 
              ONE 10: e0140434.  Ha, Y.J., Kim, S.W., Lee, C.W., Bae, 
              C.H., Yeo, J.H., Kim, I.S., Gal, S.W., Hur, 
              J., Jung, H.K., Kim, M.J. & Bang, W.Y. 2017. Anti-Salmonella 
              activity modulation of mastoparan 
              V1-a wasp venom toxin-using protease inhibitors, and its efficient 
              production via an Escherichia coli secretion system. Toxins. 
              9: pii: E321.  Kajimura, Y. & Kaneda, M. 1997. Fusaricidins B, C and D, new depsipeptide 
              antibiotics produced by Bacillus polymyxa 
              KT- 8: Isolation, structure elucidation and biological activity. 
              J Antibiot. 50: 220-228.  Kang, J.Y., Chun, J. & Jahng, K.Y. 2013. Nibribacter 
              koreensis gen. nov., 
              sp. nov., isolated from estuarine water. 
              Int. J. Syst. Evol. Microbiol. 
              63: 4663-4668.  Kaur, R. & Tiwari, S.K. 2018. 
              Membrane-acting bacteriocin purified from 
              a soil isolate Pediococcus pentosaceus 
              LB44 shows broad host-range. Biochem. 
              Biophys. Res. Commun. 498: 810-816. 
               Lin, P., Yan, Z.F., Li, C.T., Kook, 
              M. & Yi, T.H. 2018. Nibribacter 
              flagellatus sp. nov., isolated 
              from rhizosphere of Hibiscus syriacus 
              and emended description of the genus Nibribacter. 
              Antonie Van Leeuwenhoek. 111: 1777-1784.  Login, F.H., Balmand, 
              S., Vallier, A., Vincent-Monégat, 
              C., Vigneron, A., Weiss-Gayet, 
              M., Rochat, D. & Heddi, 
              A. 2011. Antimicrobial peptides keep insect endosymbionts under 
              control. Science 334: 362-365.  Mousa, W.K. & Raizada, 
              M.N. 2015. Biodiversity of genes encoding anti-microbial traits 
              within plant associated microbes. Front Plant Sci. 16: 231. 
               NIBR. 2016. Acquisition and Characterization 
              of Extremophiles (Ⅱ). Microorganism Resources Division 
              of Biological Resources Research Department.  Raddadi, N., Cherif, 
              A., Daffonchio, D., Neifar, 
              M. & Fava, F. 2015. Biotechnological applications of extremophiles, 
              extremozymes and extremolytes. Appl. 
              Microbiol. Biotechnol. 
              99: 7907-7913.  Reddy, K.V., Yedery, 
              R.D. & Aranha, C. 2004. Antimicrobial 
              peptides: Premises and promises. Int. J. Antimicrob. 
              Agents 24: 536-547.  Sarmiento, F., Peralta, R. & Blamey, 
              J.M. 2015. Cold and hot extremozymes: 
              Industrial relevance and current trends. Front Bioeng. 
              Biotechnol. 3: 148.  Sathiyaraj, G., Kim, M.K., Kim, J.Y., Kim, S.J., 
              Jang, J.H., Maeng, S.H., Kang, M.S. & 
              Srinivasan, S. 2018. Complete genome sequence of Nibribacter 
              radioresistens DG15C, a radiation 
              resistant bacterium. Mol. Cell Toxicol. 
              14: 323-328.  Schwarzer, D., Finking, R. & Marahiel, M.A. 2003. Nonribosomal 
              peptides: From genes to products. Nat. Prod. Rep. 20: 275- 
              287.  Tajbakhsh, M., Karimi, 
              A., Fallah, F. & Akhavan, 
              M.M. 2017. Overview of ribosomal and non-ribosomal antimicrobial 
              peptides produced by Gram positive bacteria. Cell. Mol. Biol. 
              63: 20-32.  Walsh, C.J., Guinane, 
              C.M., Hill, C., Ross, R.P., O’Toole, P.W. & Cotter, P.D. 2015. 
              In silico identification of bacteriocin 
              gene clusters in the gastrointestinal tract, based on the Human 
              Microbiome Project’s reference genome database. BMC Microbiol. 
              15: 183.  Wang, G. 2013. Database-guided discovery 
              of potent peptides to combat HIV-1 or superbugs. Pharmaceuticals 
              6: 728-758.  Wiegand, I., Hilpert, 
              K. & Hancock, R.E. 2008. Agar and broth dilution methods to 
              determine the minimal inhibitory concentration (MIC) of antimicrobial 
              substances. Nat. Protoc. 3: 163-175.    *Pengarang 
              untuk surat-menyurat; 
              email: wybang@korea.kr  
                  
                  
       |