Sains Malaysiana 48(10)(2019):
2135–2141
http://dx.doi.org/10.17576/jsm-2019-4810-08
Characterization of the Antimicrobial Substances
Produced by Nibribacter radioresistens
(Pencirian Bahan Antimikrob yang Dihasilkan oleh Nibribacter radioresistens)
SAM WOONG
KIM1,
YEON
JO
HA1,
SANG
WAN
GAL1,
KYU
PIL
LEE2,
KYU
HO
BANG1,
MYUNG-SUK
KANG3,
JOO-HONG
YEO3,
HEE-SUN
YANG3,
SEUNG-HO
JEON4
& WOO YOUNG BANG3*
1Gene Analysis Center,
Gyeongnam National University of Science
& Technology, Jinju 52725, Republic of Korea
2Laboratory of Physiology,
College of Veterinary Medicine, Chungnam
National University, Daejeon 34134, Republic of Korea
3National Institute
of Biological Resources (NIBR), Environmental Research Complex,
Incheon 22689, Republic of Korea
4Sunchon National
University, 255, Jungang-ro, Suncheon-si, 57922, Republic of Korea
Diserahkan: 14 Disember
2018/Diterima: 16 September 2019
ABSTRACT
This study characterized the
antimicrobial substances produced by the radiation-resistant bacterium
Nibribacter radioresistens.
The antimicrobial substances showed activity against Salmonella
Gallinarum, pathogenic Escherichia coli, Bacillus
cereus, Streptococcus iniae, and Saccharomyces
cerevisiae. The substances showed higher activity against Gram-positive
bacteria than against Gram-negative bacteria and yeast. N. radioresistens showed the best growth rate in LB
liquid medium at 37ºC; however, production
of the antimicrobial substances was not associated with growth.
Since the activity of the antimicrobial substances was affected
by proteinase K and EDTA, the substances were presumed
to be antimicrobial peptides (AMPs). The antimicrobial substances
produced by N. radioresistens were
unstable at higher temperatures and in acidic and basic pH ranges,
and most of the activity was attributed to either low (<3 kDa)
or high molecular weight (>30 kDa)
molecules. When S. Gallinarum was
treated with the antimicrobial substances, the cell destruction
was acted on the cell envelope. Therefore, we concluded that N. radioresistens produces broad-spectrum and very unstable
antimicrobial substances that mostly consist of low- and high-molecular
weight peptides.
Keywords: AMPs;
antimicrobial activity; growth curve; Nibribacter radioresistens; protease; radiation-resistant bacteria
ABSTRAK
Kajian ini dicirikan bahan
antimikrob yang dihasilkan
oleh bakteria Nibribacter
radioresistens. Bahan
antimikrob menunjukkan aktiviti menentang Salmonella
Gallinarum, patogen
Escherichia coli, Bacillus cereus, Streptococcus
iniae dan
Saccharomyces cerevisiae. Bahan yang menunjukkan
aktiviti yang lebih tinggi terhadap bakteria gram-positif berbanding dengan bakteria gram-negatif dan yis. N. radioresistens menunjukkan
kadar pertumbuhan
terbaik dalam cecair
medium lb pada
37ºC; walau bagaimanapun, pengeluaran bahan antimikrob tidak dikaitkan dengan pertumbuhan. Oleh kerana aktiviti bahan antimikrob terjejas oleh proteinase k dan edta, bahan
tersebut dianggap
sebagai antimikrob peptida (AMPs). Bahan
antimikrob yang dihasilkan
oleh N. radioresistens tidak stabil pada suhu yang lebih tinggi dan
berada dalam
julat berasid dan
ph asas, dan sebahagian besar aktiviti itu disebabkan sama ada rendah
(<3 kda) atau
berat molekul tinggi
(>30 kda). Apabila
S. Gallinarum
dirawat dengan
bahan antimikrob, pemusnahan sel telah berlaku
pada sampul
sel. Oleh itu, kami menyimpulkan bahawa N. radioresistens menghasilkan
bahan antimikrob
yang luas dan sangat
tidak stabil
yang kebanyakannya terdiri daripada peptida berat molekul rendah
dan tinggi.
Kata kunci: Aktiviti antimikrob; AMPs; bakteria rintangan-sinaran; keluk
pertumbuhan; Nibribacter radioresisten;
sprotease
RUJUKAN
Azevedo, A.C.,
Bento, C.B., Ruiz, J.C., Queiroz, M.V.
& Mantovani, H.C. 2015. Distribution and genetic diversity of
bacteriocin gene clusters in rumen microbial
genomes. Appl. Environ. Microbiol.
81: 7290-7304.
Bulet, P.
& Stocklin, R. 2005. Insect antimicrobial peptides: structures,
properties and gene regulation. Protein Pept.
Lett. 12: 3-11.
Cabrera, M.A. & Blamey, J.M. 2018. Biotechnological applications
of archaeal enzymes from extreme environments. Biol
Res. 51: 37.
Chen, G.Q. & Jiang, X.R. 2018. Next generation industrial biotechnology
based on extremophilic bacteria. Curr. Opin. Biotechnol. 50: 94100.
Demain, A.L. 1998. Induction of microbial
secondary metabolism. Int. Microbiol.
1: 259-264.
Dimopoulos, G., Richman, A., Müller, H.M. &
Kafatos, F.C. 1997. Molecular immune responses
of the mosquito Anopheles gambiae to
bacteria and malaria parasites. Proc. Natl. Acad. Sci. USA. 94:
11508-11513.
Dopson, M., Ni, G. & Sleutels, T.H. 2016. Possibilities for extremophilic
microorganisms in microbial electrochemical systems. FEMS Microbiol. Rev. 40: 164-181.
Easton, D.M., Nijnik,
A., Mayer, M.L. & Hancock, R.E. 2009. Potential of immunomodulatory
host defense peptides as novel anti-infectives.
Trends Biotechnol. 27: 582-590.
Garsa, A.K., Kumariya,
R., Sood, S.K., Kumar, A. & Kapila,
S. 2014. Bacteriocin production and different
strategies for their recovery and purification. Probiotics Antimicrob. Proteins 6: 47-58.
Goh, H.F. & Philip, K. 2015. Purification
and characterization of bacteriocin produced
by Weissella confusa
A3 of dairy origin. PLoS
ONE 10: e0140434.
Ha, Y.J., Kim, S.W., Lee, C.W., Bae,
C.H., Yeo, J.H., Kim, I.S., Gal, S.W., Hur,
J., Jung, H.K., Kim, M.J. & Bang, W.Y. 2017. Anti-Salmonella
activity modulation of mastoparan
V1-a wasp venom toxin-using protease inhibitors, and its efficient
production via an Escherichia coli secretion system. Toxins.
9: pii: E321.
Kajimura, Y. & Kaneda, M. 1997. Fusaricidins B, C and D, new depsipeptide
antibiotics produced by Bacillus polymyxa
KT- 8: Isolation, structure elucidation and biological activity.
J Antibiot. 50: 220-228.
Kang, J.Y., Chun, J. & Jahng, K.Y. 2013. Nibribacter
koreensis gen. nov.,
sp. nov., isolated from estuarine water.
Int. J. Syst. Evol. Microbiol.
63: 4663-4668.
Kaur, R. & Tiwari, S.K. 2018.
Membrane-acting bacteriocin purified from
a soil isolate Pediococcus pentosaceus
LB44 shows broad host-range. Biochem.
Biophys. Res. Commun. 498: 810-816.
Lin, P., Yan, Z.F., Li, C.T., Kook,
M. & Yi, T.H. 2018. Nibribacter
flagellatus sp. nov., isolated
from rhizosphere of Hibiscus syriacus
and emended description of the genus Nibribacter.
Antonie Van Leeuwenhoek. 111: 1777-1784.
Login, F.H., Balmand,
S., Vallier, A., Vincent-Monégat,
C., Vigneron, A., Weiss-Gayet,
M., Rochat, D. & Heddi,
A. 2011. Antimicrobial peptides keep insect endosymbionts under
control. Science 334: 362-365.
Mousa, W.K. & Raizada,
M.N. 2015. Biodiversity of genes encoding anti-microbial traits
within plant associated microbes. Front Plant Sci. 16: 231.
NIBR. 2016. Acquisition and Characterization
of Extremophiles (Ⅱ). Microorganism Resources Division
of Biological Resources Research Department.
Raddadi, N., Cherif,
A., Daffonchio, D., Neifar,
M. & Fava, F. 2015. Biotechnological applications of extremophiles,
extremozymes and extremolytes. Appl.
Microbiol. Biotechnol.
99: 7907-7913.
Reddy, K.V., Yedery,
R.D. & Aranha, C. 2004. Antimicrobial
peptides: Premises and promises. Int. J. Antimicrob.
Agents 24: 536-547.
Sarmiento, F., Peralta, R. & Blamey,
J.M. 2015. Cold and hot extremozymes:
Industrial relevance and current trends. Front Bioeng.
Biotechnol. 3: 148.
Sathiyaraj, G., Kim, M.K., Kim, J.Y., Kim, S.J.,
Jang, J.H., Maeng, S.H., Kang, M.S. &
Srinivasan, S. 2018. Complete genome sequence of Nibribacter
radioresistens DG15C, a radiation
resistant bacterium. Mol. Cell Toxicol.
14: 323-328.
Schwarzer, D., Finking, R. & Marahiel, M.A. 2003. Nonribosomal
peptides: From genes to products. Nat. Prod. Rep. 20: 275-
287.
Tajbakhsh, M., Karimi,
A., Fallah, F. & Akhavan,
M.M. 2017. Overview of ribosomal and non-ribosomal antimicrobial
peptides produced by Gram positive bacteria. Cell. Mol. Biol.
63: 20-32.
Walsh, C.J., Guinane,
C.M., Hill, C., Ross, R.P., O’Toole, P.W. & Cotter, P.D. 2015.
In silico identification of bacteriocin
gene clusters in the gastrointestinal tract, based on the Human
Microbiome Project’s reference genome database. BMC Microbiol.
15: 183.
Wang, G. 2013. Database-guided discovery
of potent peptides to combat HIV-1 or superbugs. Pharmaceuticals
6: 728-758.
Wiegand, I., Hilpert,
K. & Hancock, R.E. 2008. Agar and broth dilution methods to
determine the minimal inhibitory concentration (MIC) of antimicrobial
substances. Nat. Protoc. 3: 163-175.
*Pengarang
untuk surat-menyurat;
email: wybang@korea.kr
|