Sains Malaysiana 49(4)(2020): 839-846
http://dx.doi.org/10.17576/jsm-2020-4904-13
Potential
Association of Nicotinamide on the Telomerase Activity and Telomere Length
Mediated by PARP-1 Mechanism
in Myeloid Cancer
(Potensi Perkaitan Nikotinamida ke atas Aktiviti Telomerase dan Panjang Telomer Disebabkan oleh
Mekanisme PARP-1 pada Kanser Mieloid)
NUR
RASYIDAH MUHAMMAD1, AZLINA AHMAD2, SITI NORASIKIN MOHD
NAFI3, FARIZAN AHMAD4, ZARIYANTEY ABDUL HAMID5 & SARINA SULONG1*
1Human
Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health
Campus, 16150 Kelantan Darul Naim, Malaysia
2School
of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kelantan
Darul Naim, Malaysia
3Department
of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health
Campus, 16150 Kelantan Darul Naim, Malaysia
4Department
of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health
Campus, 16150 Kelantan Darul Naim, Malaysia
5School
of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti
Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 21 April 2019/Diterima: 7 Januari 2020
ABSTRACT
Administration
of nicotinamide is affecting various types of cells through its survival,
maturation, and differentiation. Nicotinamide as part of vitamin B3,
plays an important role in DNA repair and maintenance of the genomic stability
which related to its function as a NAD+ precursor that involve in
many biological processes. During DNA breaks, PARP-1 mechanism will be
activated and use NAD+ as a substrate in process of DNA damage and
repair that will result to either cell repair and cell death. In the meantime,
in presence of nicotinamide that is also acting as a PARP-1 inhibitor, causing
inability of the repair mechanism to fix the entire DNA damage which also lead
to the cell death. Therefore, loss of PARP-1 enzyme will cause disturbance in
the DNA repair process. Telomere shortening rate was reduced in the presence of
nicotinamide that might related with telomerase enzyme which able to maintain
the telomere length of the cell. Other than that, telomere also can be
influenced by PARP-1 activity where it might show some correlation between
nicotinamide, telomere and telomerase that could related with PARP-1 mechanism.
Currently, there is no treatment options that respond effectively in chronic
myeloid leukemia (CML) in blast crisis (BC) phase without any side effect and
it is require an identification of new drug therapies to treat the CML
patients. By understanding the role and potential of nicotinamide relation with
PARP-1 mechanism in telomere and telomerase status may improve the therapeutic
strategy for chronic myeloid leukemia.
Keywords:
Nicotinamide; PARP-1; telomerase; telomere
Abstrak
Pengambilan nikotinamida menjejaskan pelbagai jenis
sel melalui kelangsungan hidup, kematangan dan pembezaannya. Nikotinamida
sebagai sebahagian daripada vitamin B3 memainkan peranan penting
dalam pembaikan dan penyelenggaraan kestabilan genom DNA yang berkaitan dengan
fungsinya sebagai prakursor NAD+ yang melibatkan banyak proses
biologi. Semasa DNA pecah, mekanisme PARP-1 akan diaktifkan dan menggunakan NAD+ sebagai substrat dalam proses kerosakan dan pembaikan DNA yang akan menyebabkan
pembaikan sel dan kematian sel. Sementara itu, dengan adanya nikotinamida yang
juga bertindak sebagai perencat PARP-1, menyebabkan ketidakupayaan mekanisme
pembaikan untuk memperbaiki keseluruhan kerosakan DNA yang juga membawa kepada
kematian sel. Oleh itu, kehilangan enzim PARP-1 akan menyebabkan gangguan dalam
proses pembaikan DNA. Kadar pemendekan telomer berkurang dengan kehadiran
nikotinamida yang mungkin berkaitan dengan enzim telomerase yang dapat
mengekalkan panjang telomer sel. Selain itu, telomer juga boleh dipengaruhi
oleh aktiviti PARP-1 dan ia mungkin menunjukkan beberapa korelasi antara nikotinamida, telomer dan
telomerase yang boleh dikaitkan dengan mekanisme PARP-1. Pada masa ini, tiada
pilihan rawatan yang bertindak balas dengan berkesan dalam leukemia mieloid
kronik (CML) dalam fasa krisis blas (BC) tanpa sebarang kesan sampingan dan
memerlukan pengenalan terapi ubat baru untuk merawat pesakit CML. Dengan
memahami peranan dan potensi hubungan nikotinamida dengan mekanisme PARP-1
dalam telomer dan status telomerase dapat meningkatkan strategi terapeutik
untuk leukemia mieloid kronik.
Kata kunci: Nikotinamida; PARP-1; telomerase; telomer
RUJUKAN
Allende-Castro, C., Espina-Marchant, P., Bustamante,
D., Rojas-Mancilla, E., Neira, T., Gutierrez-Hernandez, M., Esmar, D., Valdes,
J.L., Morales, P., Gebicke-Haerter, P.J. & Herrera-Marschitz, M. 2012.
Further studies on the hypothesis of PARP-1 inhibition as a strategy for
lessening the long-term effects produced by perinatal asphyxia: Effects of
nicotinamide and theophylline on PARP-1 activity in brain and peripheral
tissue. Neurotoxicity Research 22(1):
79-90.
Audrito,
V., Vaisitti, T., Rossi, D., Gottardi, D., D'Arena, G., Laurenti, L., Gaidano,
G., Malavasi, F. & Deaglio, S. 2011. Nicotinamide blocks proliferation and
induces apoptosis of chronic lymphocytic leukemia cells through activation of
the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Research 71(13): 4473-4483.
Belenky,
P., Bogan, K.L. & Brenner, C. 2007. NAD+ metabolism in health and disease. Trends in Biochemical Sciences 32(1):
12-19.
Boesten,
D.M.P.H.J., de Vos-Houben, J.M.J., Timmermans, L., den Hartog, G.J., Bast, A.
& Hageman, G.J. 2013. Accelerated aging during chronic oxidative stress: A
role for PARP-1. Oxidative Medicine and
Cellular Longevity 2013: 680414.
Bogan,
K.L. & Brenner, C. 2008. Nicotinic acid, nicotinamide, and nicotinamide
riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28: 115-130.
Bouffler,
S.D., Morgan, W.F., Pandita, T.K. & Slijepcevic, P. 1996. The involvement
of telomeric sequences in chromosomal aberrations. Mutation Research/Reviews in Genetic Toxicology 366(2): 129-135.
Burkle,
A. 2001. Physiology and pathophysiology of poly (ADP‐ribosyl)ation. Bioessays 23(9): 795-806.
Cao,
Y., Bryan, T.M. & Reddel, R.R. 2008. Increased copy number of the TERT and
TERC telomerase subunit genes in cancer cells. Cancer Science 99(6): 1092-1099.
Chen,
A.C., Martin, A.J., Choy, B., Fernández-Peñas, P., Dalziell, R.A., McKenzie,
C.A., Scolyer, R.A., Dhillon, H.M., Vardy, J.L., Kricker, A., St. George, G.,
Chinniah, N., Halliday, G.M. & Damian, D.L. 2015. A phase 3 randomized
trial of nicotinamide for skin-cancer chemoprevention. New England Journal of Medicine 373(17): 1618-1626.
De
Lorenzo, S., Patel, A., Hurley, R. & Kaufmann, S.H. 2013. The elephant and
the blind men: Making sense of PARP inhibitors in homologous recombination
deficient tumor cells. Frontiers in
Oncology 3: 228.
De
Soto, J.A., Wang, X., Tominaga, Y., Wang, R.H., Cao, L., Qiao, W., Cuiling,
Li., Xu, X.L.,
Skoumbourdis, A.P., Prindiville, S.A., Thomas, C.J. & Deng, C-X. 2006. The inhibition and
treatment of breast cancer with poly (ADP-ribose) polymerase (PARP-1)
inhibitors. International Journal of
Biological Sciences 2(4): 179-185.
Druker,
B.J. 2008. Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13): 4808-4817.
Druker,
B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon,
N.B., Kantarjian, H., Capdeville, R., Ohno-Jones, S. & Sawyers, C.L. 2001.
Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in
chronic myeloid leukemia. New England
Journal of Medicine 344(14): 1031-1037.
Druker,
B.J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G.M., Fanning, S.,
Zimmermann, J. & Lydon, N.B. 1996. Effects of a selective inhibitor of the
Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Medicine 2(5): 561-566.
Hazlehurst,
L.A., Bewry, N.N., Nair, R.R. & Pinilla-Ibarz, J. 2009. Signaling networks
associated with BCR–ABL–dependent transformation. Cancer Control 16(2): 100-107.
Holl,
V., Coelho, D., Weltin, D., Hyun, J., Dufour, P. & Bischoff, P. 2000.
Modulation of the antiproliferative activity of anticancer drugs in
hematopoietic tumor cell lines by the poly (ADP-ribose) polymerase inhibitor 6
(5H)-phenanthridinone. Anticancer
Research 20(5A): 3233-3241.
Horikawa,
I. & Barrett, J.C. 2003. Transcriptional regulation of the telomerase hTERT
gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 24(7): 1167-1176.
Hughes,
T. & White, D. 2013. Which TKI? An embarrassment of riches for chronic myeloid
leukemia patients. ASH Education Program
Book 2013 1: 168-175.
Ida,
C., Ogata, S., Okumura, K. & Taguchi, H. 2009. Induction of differentiation
in k562 cell line by nicotinic acid-related compounds. Bioscience, Biotechnology, and Biochemistry 73(1): 79-84.
Jacob,
R.A. & Swendseid, M. 1996. Niacin. Present
Knowledge in Nutrition 7: 185-190.
Jacobson,
E.L., Shieh, W.M. & Huang, A.C. 1999. Mapping the role of NAD metabolism in
prevention and treatment of carcinogenesis. In ADP-Ribosylation Reactions: From Bacterial Pathogenesis to Cancer, edited by Alvarez-Gonzalez R. Molecular and Cellular Biochemistry: An International Journal for
Chemical Biology in Health and Disease Vol. 30. Boston: Springer. pp. 69-74.
Jin,
J., Lee, K.B., Park, S.Y. & Jang, J.J. 2011. Nicotinamide inhibits hepatic
fibrosis by suppressing DNA synthesis and enhancing apoptosis of hepatic
stellate cells. Virchows Archive 458(6):
689.
Kang,
H.T., Lee, H.I. & Hwang, E.S. 2006. Nicotinamide extends replicative
lifespan of human cells. Aging Cell 5(5):
423-436.
Kantarjian,
H., Sawyers, C., Hochhaus, A., Guilhot, F., Schiffer, C., Gambacorti-Passerini,
C., Niederwieser, D., Resta, D., Capdeville, R., Zoellner, U., Talpaz, M. &
Druker, B. 2002. Hematologic and cytogenetic responses to imatinib mesylate in
chronic myelogenous leukemia. New England
Journal of Medicine 346(9): 645-652.
Karthikeyan,
K. & Thappa, D.M. 2002. Pellagra and skin. International Journal of Dermatology 41(8): 476-481.
Kauppinen,
T.M., Gan, L. & Swanson, R.A. 2013. Poly (ADP-ribose) polymerase-1-induced
NAD+ depletion promotes nuclear factor-κB transcriptional activity by
preventing p65 de-acetylation. Biochimica
et Biophysica Acta (BBA)-Molecular Cell Research 1833(8): 1985-1991.
Kjellen,
E., Jonsson, G.G., Pero, R.W. & Christensson, P.I. 1985. Effects of
hyperthermia and nicotinamide on DNA repair synthesis, ADP-ribosyl transferase
activity, NAD+ and ATP pools, and cytotoxicity in γ-irradiated human
mononuclear leukocytes. International
Journal of Radiation Biology and Related Studies in Physics, Chemistry and
Medicine 49(1): 151-162.
Knip, M., Douek, I.F., Moore,
W.P.T., Gillmor, H.A., McLean, A.E.M., Bingley, P.J., Gale, E.A. & European
Nicotinamide Diabetes Intervention Trial Group. 2000. Safety of
high-dose nicotinamide: A review. Diabetologia 43(11): 1337-1345.
Lee,
H.I., Jang, S.Y., Kang, H.T. & Hwang, E.S. 2008. p53-, SIRT1-, and
PARP-1-independent downregulation of p21WAF1 expression in nicotinamide-treated
cells. Biochemical and Biophysical
Research Communications 368(2): 298-304.
Leitner,
A.A., Hochhaus, A. & Muller, M.C. 2011. Current treatment concepts of CML. Current Cancer Drug Targets 11(1):
31-43.
Litwack,
G. 2018. Vitamins and nutrition. In Human
Biochemistry, edited by G. Litwack. New
York: Academic Press. pp.
645-680.
Liu,
S.K., Coackley, C., Krause, M., Jalali, F., Chan, N. & Bristow, R.G. 2008.
A novel poly (ADP-ribose) polymerase inhibitor, ABT-888, radiosensitizes
malignant human cell lines under hypoxia. Radiotherapy
and Oncology 88(2): 258-268.
Lozzio,
C.B. & Lozzio, B.B. 1975. Human chronic myelogenous leukemia cell-line with
positive Philadelphia chromosome. Blood 45(3):
321-334.
Magan,
N., Isaacs, R.J. & Stowell, K.M. 2012. Treatment with the PARP-inhibitor
PJ34 causes enhanced doxorubicin-mediated cell death in HeLa cells. Anti-Cancer Drugs 23(6): 627-637.
Malyuchenko,
N., Kotova, E.Y., Kulaeva, O., Kirpichnikov, M. & Studitskiy, V. 2015.
PARP1 Inhibitors: Antitumor drug design. Acta
Naturae
(англоязычная
версия) 7(3): 26.
Mason,
K.A., Valdecanas, D., Hunter, N.R. & Milas, L. 2008. INO-1001, a novel
inhibitor of poly (ADP-ribose) polymerase, enhances tumor response to
doxorubicin. Investigational New Drugs 26(1): 1-5.
Matsubara,
Y., Murata, M., Yoshida, T., Watanabe, K., Saito, I., Miyaki, K., Kazuyuki, O.
& Ikeda, Y. 2006. Telomere length of normal leukocytes is affected by a
functional polymorphism of hTERT. Biochemical
and Biophysical Research Communications 341(1): 128-131.
Melo,
J.V. & Barnes, D.J. 2007. Chronic myeloid leukaemia as a model of disease
evolution in human cancer. Nature Reviews
Cancer 7(6): 441-453.
Opitz,
O.G. 2005. Telomeres, telomerase and malignant transformation. Current Molecular Medicine 5(2):
219-226.
Park,
J., Halliday, G.M., Surjana, D. & Damian, D.L. 2010. Nicotinamide prevents
ultraviolet radiation‐induced cellular energy loss. Photochemistry and Photobiology 86(4): 942-948.
Paul,
L. 2011. Diet, nutrition and telomere length. The Journal of Nutritional Biochemistry 22(10): 895-901.
Pietarinen,
P., Pemovska, T., Kontro, M., Yadav, B., Mpindi, J., Andersson, E., Majumder,
M.M., Kuusanmäki, H., Koskenvesa, P., Kallioniemi, O., Wennerberg, K., Heckman,
C.A., Mustjoki, S. & Porkka, K. 2015. Novel drug candidates for blast phase
chronic myeloid leukemia from high-throughput drug sensitivity and resistance
testing. Blood Cancer Journal 5(5):
e309.
Quintas-Cardama,
A., Kantarjian, H. & Cortes, J. 2007. Flying under the radar: The new wave
of BCR–ABL inhibitors. Nature Reviews
Drug Discovery 6(10): 834-848.
Ranchoff,
R.E. & Tomecki, K.J. 1986. Niacin or niacinamide? Nicotinic acid or
nicotinamide? What is the difference? Journal
of the American Academy of Dermatology 15(1): 116-117.
Rouleau,
M., Patel, A., Hendzel, M.J., Kaufmann, S.H. & Poirier, G.G. 2010. PARP
inhibition: PARP1 and beyond. Nature
Reviews Cancer 10(4): 293-301.
Shapira,
S., Granot, G., Mor-Tzuntz, R., Raanani, P., Uziel, O., Lahav, M. &
Shpilberg, O. 2012. Second-generation tyrosine kinase inhibitors reduce
telomerase activity in K562 cells. Cancer
Letters 323(2): 223-231.
Shay,
J.W. & Wright, W.E. 2004. Senescence and immortalization: Role of telomeres
and telomerase. Carcinogenesis 26(5):
867-874.
Surjana,
D., Halliday, G.M. & Damian, D.L. 2010. Role of nicotinamide in DNA damage,
mutagenesis, and DNA repair. Journal of
Nucleic Acids 2010: 157591.
Surjana,
D., Halliday, G.M. & Damian, D.L. 2013. Nicotinamide enhances repair of
ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin. Carcinogenesis 34(5): 1144-1149.
Thompson,
B.C., Surjana, D., Halliday, G.M. & Damian, D.L. 2014. Nicotinamide
enhances repair of ultraviolet radiation‐induced DNA damage in primary
melanocytes. Experimental Dermatology 23(7): 509-511.
Traister,
A., Breitman, I., Bar-Lev, E., Zvibel, I., Harel, A., Halpern, Z. & Oren,
R. 2005. Nicotinamide induces apoptosis and reduces collagen I and
pro-inflammatory cytokines expression in rat hepatic stellate cells. Scandinavian Journal of Gastroenterology 40(10):
1226-1234.
Turunc
Bayrakdar, E., Uyanikgil, Y., Kanit, L., Koylu, E. & Yalcin, A. 2014.
Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and
PARP-1 activity in Aβ (1-42)-induced
rat model of Alzheimer's disease. Free
Radical Research 48(2): 146-158.
Vaziri,
H., Dessain, S.K., Eaton, E.N., Imai, S.I., Frye, R.A., Pandita, T.K.,
Guarente, L. & Weinberg, R.A. 2001. hSIR2SIRT1 functions as an
NAD-dependent p53 deacetylase. Cell 107(2):
149-159.
Virag,
L. & Szabo, C. 2002. The therapeutic potential of poly (ADP-ribose)
polymerase inhibitors. Pharmacological
Reviews 54(3): 375-429.
Yarosh,
D.B. 2004. DNA repair, immunosuppression, and skin cancer. Cutis. 74(5): 10-13.
Yildirim,
R., Sincan, G., Pala, C., Dudukcu, M., Kaynar, L., Urlu, S.M., Kiki, İ.,
Erdem, F., Çetin, M., Gündoğdu, M. & Topdağı, Ö. 2016.
Effects of imatinib, nilotinib and dasatinib on serum VEGF and VEGFR-1 levels
in patients with chronic phase chronic myelogenous leukemia. European Journal of General Medicine 13(2):
111-115.
*Pengarang untuk surat-menyurat; email: ssarina@usm.my
|