| Sains
          Malaysiana 50(10)(2021): 3107-3126
            
           http://doi.org/10.17576/jsm-2021-5010-23 
            
           
             
           Keterlarutan
            Selulosa, Pelarut dan Produk Selulosa yang Dijana Semula: Suatu Ulasan
            
           (Cellulose
            Solubility, Solvent and Their Regenerated Cellulose Products: A Review)
            
           
             
           KUSHAIRI
            MOHD SALLEH1, SARANI ZAKARIA1*, MARHAINI MOSTAPHA1,
            UMAR ADLI AMRAN1, WAN NOOR AIDAWATI WAN NADHARI2 &
            NUR AIN IBRAHIM1
  
           
             
           1Bioresource & Biorefinery
            Research Group, Faculty of Science and Technology, Universiti Kebangsaan
            Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
            
           
             
           2Malaysian Institute of Chemical and
            Bioengineering Technology, Universiti Kuala Lumpur, Lot 1988 Kawasan
            Perindustrian Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia
            
           
             
           Diserahkan:
            2 Disember 2020/Diterima: 22 Februari 2021
            
           
             
           ABSTRAK
            
           Selulosa
            ialah polimer semula jadi yang boleh diperbaharui dan biasanya ditemui di dalam
            dinding sel tumbuhan. Interaksi hidrofobik yang kompleks serta sifat amfifilik
            menyebabkan ia sukar dilarutkan dan seterusnya membataskan penggunaannya secara
            menyeluruh. Pemahaman kepada struktur kimia dan fiziknya membolehkan proses
            pelarutan berlaku dengan penggunaan jenis pelarut yang bersesuaian. Namun,
            pelarut sedia ada bukanlah yang terbaik dan efisien terhadap pelarutan
            selulosa. Sehingga kini, kajian kepada jenis pelarut dan mekanisme pelarutan
            masih menjadi topik utama penyelidikan. Selulosa yang terlarut pula boleh
            dijana semula kepada produk fizikal yang lain, contohnya hidrogel, aerogel,
            kriogel dan xerogel.
              Produk yang dijana semula daripada selulosa yang terlarut boleh diacukan kepada
              pelbagai bentuk yang mempunyai struktur tulang yang kuat dan bersifat
              hidrofilik, bioserasi dan terbiodegradasi. Potensi dalam aplikasi yang pelbagai
              serta terbukti sebagai alternatif kepada polimer sintetik menjadikan polimer
              semula jadi ini berpotensi besar dalam bidang sains dan teknologi. Maka, ulasan
              kajian terhadap selulosa, jenis pelarut serta produk yang dijana semula
              daripadanya menjadi fokus dalam penulisan makalah ini.
  
 
             
           Kata
            kunci: Pelarutan; pelarut tak-terbitan; pelarut terbitan; produk terjana semula
            
           
             
           ABSTRACT
            
           Cellulose
            is a naturally occurring polymer that is renewable and usually found in the
            plants' cell wall. Cellulose complex hydrophobic interactions and amphiphilic
            character render them difficult to be dissolved and consequently restricting
            total utilization. Understanding on their chemical structure and physical
            behaviour, introduction to suitable solvent allowing dissolution process to
            occur. Nonetheless, the current solvents are not the best and not as efficient
            as intended towards cellulose dissolution. Till date, research on solvent types
            and their reaction mechanism are still explored and characterized. The
            dissolved cellulose can be regenerated to different physical products such as
            hydrogel, aerogel, cryogel, and xerogel. The regenerated products from
            dissolved cellulose can be moulded into various shape with a strong skeletal
            structure and usually hydrophilic, biocompatible, and can be biodegraded.
            Cellulose potentials in various applications are proven as an excellent
            alternative to the synthetic polymer, making this naturally occurring polymer
            has huge potentials in science and technology. Therefore, a review on
            cellulose, different types of solvent and regenerated products from cellulose-based
            materials are the main focus in this manuscript.
            
           
             
           Keywords:
            Derivatizing solvent; dissolving; non-derivatizing solvent; regenerated
            products
            
           
             
           RUJUKAN
            
           
            
            Abedi-Koupai,
              J., Sohrab, F. & Swarbrick, G. 2008. Evaluation of hydrogel application on
              soil water retention characteristics. J. Plant Nutr. 31: 317-331.
  
             Atalla, R.H. & Isogai, A. 2010. Celluloses. In Comprehensive
            Natural Products II: Chemistry and Biology, edited by Mander, L. & Liu,
            H.W. Elsevier. pp. 493-539.
  
           Beaumont, M., König, J., Opietnik, M., Potthast, A. & Rosenau, T.
            2017. Drying of a cellulose II gel: Effect of physical modification and
            redispersibility in water. Cellulose 24: 1199-1209.
  
           Błaszczyński, T., Ślosarczyk, A. & Morawski, M. 2013.
            Synthesis of silica aerogel by supercritical drying method. Procedia Eng.
            57: 200-206.
  
           Bortolin, A., Aouada, F.A., Mattoso, L.H.C. & Ribeiro, C. 2013.
            Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: Evidence of
            synergistic effects for the slow release of fertilizers. J. Agric. Food Chem.
            61: 7431-7439.
  
           Buchtová, N. & Budtova, T. 2016. Cellulose aero-, cryo- and xerogels:
            Towards understanding of morphology control. Cellulose 23: 2585-2595.
  
           Buwalda, S.J., Boere, K.W.M., Dijkstra, P.J., Feijen, J., Vermonden, T.
  & Hennink, W.E. 2014. Hydrogels in a historical perspective: From simple
            networks to smart materials. J. Control Release 190: 254-273.
  
           Cai, J. & Zhang, L. 2005. Rapid dissolution of cellulose in LiOH/urea
            and NaOH/urea aqueous solutions. Macromol. Biosci. 5: 539-548.
  
           Cai, J., Zhang, L., Liu, S., Liu, Y., Xu, X., Chen, X., Chu, B., Guo, X.,
            Xu, J., Cheng, H., Han, C.C. & Kuga, S. 2008. Dynamic self-assembly induced
            rapid dissolution of cellulose at low temperatures. Macromolecules 41:
            9345-9351.
  
           Calcagnile, P., Sibillano, T., Giannini, C., Sannino, A. & Demitri, C.
            2019. Biodegradable poly (lactic acid)/cellulose-based superabsorbent hydrogel
            composite material as water and fertilizer reservoir in agricultural
            applications. J. Appl. Polym. Sci. 136(21): 47546.
  
           Capanema, N.S.V., Mansur, A.A.P., Jesus, A.C.D., Carvalho, S.M., De
            Oliveira, L.C. & Mansur, H.S. 2018. Superabsorbent crosslinked
            carboxymethyl cellulose-PEG hydrogels for potential wound dressing
            applications. Int. J. Biol. Macromol. 106: 1218-1234.
  
           Cuissinat, C. & Navard, P. 2008. Swelling and dissolution of
            cellulose, Part III: Plant fibres in aqueous systems. Cellulose 15:
            67-74.
  
           Cuissinat, C. & Navard, P. 2006. Swelling and dissolution of cellulose
            Part II : Free floating cotton and wood fibres in NaOH – water –
            additives systems. Macromol. Symp. 244: 19-30.
  
           Cuissinat, C., Navard, P. & Heinze, T. 2008a. Swelling and dissolution
            of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydr.
              Polym. 72: 590-596.
  
           Cuissinat, C., Navard, P. & Heinze, T. 2008b. Swelling and dissolution
            of cellulose, Part V: Cellulose derivatives fibres in aqueous systems and ionic
            liquids. Cellulose 15: 75-80.
  
           Davidson, G.F. 1934. 12 - The dissolution of chemically modified cotton
            cellulose in alkaline solutions: Part I - In solutions of sodium hydroxide,
            particularly at temperatures below the normal. J. Text. Inst. Trans. 25:
            T174-T196.
  
           Davis, W.E., King, A.J., Barry, A.J. & Peterson, F.C. 1943. X-ray
            studies of reactions of cellulose in non-aqueous systems. II. Interaction of
            cellulose and primary amines. J. Am. Chem. Soc. 65: 1294-1299.
  
           De Silva, R., Vongsanga, K., Wang, X. & Byrne, N. 2016. Understanding
            key wet spinning parameters in an ionic liquid spun regenerated cellulosic
            fibre. Cellulose 23: 2741-2751.
  
           Delbecq, F., Wang, Y., Muralidhara, A., El Ouardi, K.E., Marlair, G. &
            Len, C. 2018. Hydrolysis of hemicellulose and derivatives - A review of recent
            advances in the production of furfural. Front. Chem. 6: 146.
  
           Demitri, C., Scalera, F., Madaghiele, M., Sannino, A. & Maffezzoli, A.
            2013. Potential of cellulose-based superabsorbent hydrogels as water reservoir
            in agriculture. Int. J. Polym. Sci. 2013: 435073.
  
           El-Sherbiny, I. & Yacoub, M. 2013. Hydrogel scaffolds for tissue
            engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013:
            316-342.
  
           El Seoud, O.A. & Heinze, T. 2005. Organic esters of cellulose: New
            perspectives for old polymers. Adv. Polym. Sci. 186: 103-149.
  
           Elbarbary, A.M. & Ghobashy, M.M. 2017. Controlled release fertilizers
            using superabsorbent hydrogel prepared by gamma radiation. Radiochim. Acta 105: 865-876.
  
           Feksa, L.R., Troian, E.A., Muller, C.D., Viegas, F., Machado, A.B. &
            Rech, V.C. 2018. Hydrogels for biomedical applications. In Nanostructures
              for the Engineering of Cells, Tissues and Organs: From Design to Applications, edited
            by Grumezescu, A.M. William Andrew Publishing. pp. 403-438.
  
           Gan, S., Zakaria, S., Salleh, K.M., Anuar, N.I.S., Moosavi, S. & Chen,
            R.S. 2020. An improved physico-mechanical performance of macropores membrane
            made from synthesized cellulose carbamate. Int. J. Biol. Macromol. 158:
            552-561.
  
           Gavillon, R. & Budtova, T. 2007. Aerocellulose: New highly porous
            cellulose prepared from cellulose−NaOH aqueous solutions. Biomacromolecules 9: 269-277.
  
           Glasser, W.G. 2008. Cellulose and associated heteropolysaccharides. Glycoscience.
            Berlin, Heidelberg: Springer-Verlag. p. 1473.
            
           van de ven, T.G.M. & Godbout, L. 2013. Cellulose - Fundamental Aspects. https://www.intechopen.com/books/2326.
            
           Gou, L., Xiang, M. & Ni, X. 2020. Development of wound therapy in
            nursing care of infants by using injectable gelatin-cellulose composite
            hydrogel incorporated with silver nanoparticles. Mater. Lett. 277: 128340.
  
           Graenacher, C. 1934. Cellulose Solution. US1943176A.
            
           Gulrez, S.K.H., Al-Assaf, S. & Phillips, G.O. 2003. Hydrogels: Methods
            of preparation, characterisation and applications. Prog. Mol. Environ.
              Bioeng. 51: 117-150.
  
           Gun’ko, V.M., Savina, I.N. & Mikhalovsky, S.V. 2013. Cryogels:
            Morphological, structural and adsorption characterisation. Adv. Colloid
              Interface Sci. 187-188: 1-46.
  
           Guo, Y., Zhou, J., Wang, Y., Zhang, L. & Lin, X. 2010. An efficient
            transformation of cellulose into cellulose carbamates assisted by microwave
            irradiation. Cellulose 17: 1115-1125.
  
           Heinze, T. & Koschella, A. 2005. Solvents applied in the field of
            cellulose chemistry: A mini review. Polímeros 15: 84-90.
  
           Hixon, K.R., Lu, T. & Sell, S.A. 2017. A comprehensive review of
            cryogels and their roles in tissue engineering applications. Acta Biomater. 62: 29-41.
  
           Hoffman, A.S. 2012. Hydrogels for biomedical applications. Adv. Drug
            Deliv. Rev. 64: 18-23.
  
           Innerlohinger, J., Weber, H.K. & Kraft, G. 2006. Aerocellulose:
            Aerogels and aerogel-like materials made from cellulose. Macromol. Symp. 244:
            126-135.
  
           Itagaki, H., Tokai, M. & Kondo, T. 1997. Physical gelation process for
            cellulose whose hydroxyl groups are regioselectively substituted by fluorescent
            groups. Polymer (Guildf). 38: 4201-4205.
  
           McNaught, A.D. & Wilkinson, A. 1997. Coprecipitation. Compendium of Chemical Terminology: IUPAC
            Recommendations. 2nd ed. Blackwell Science. p. 336.
  
 Jeddi, M.K. & Mahkam, M. 2019. Magnetic nano carboxymethyl
            cellulose-alginate/chitosan hydrogel beads as biodegradable devices for
            controlled drug delivery. Int. J. Biol. Macromol. 135: 829-838.
  
           Karadagli, I., Milow, B., Ratke, L. & Schulz, B. 2012. Synthesis and
            characterization of highly porous cellulose aerogels for textiles applications.
            https://elib.dlr.de/78416/.
            
           Khan, S., Ul-islam, M., Ikram, M., Ul, S., Wajid, M., Israr, M., Hyun, J.,
            Yoon, S. & Kon, J. 2018. Preparation and structural characterization of
            surface modified microporous bacterial cellulose scaffolds: A potential
            material for skin regeneration applications in vitro and in vivo. Int. J. Biol. Macromol. 117: 1200-1210.
  
           Khattab, T.A., Dacrory, S., Abou-Yousef, H. & Kamel, S. 2019. Development
            of microporous cellulose-based smart xerogel reversible sensor via freeze
            drying for naked-eye detection of ammonia gas. Carbohydr. Polym. 210:
            196-203.
  
           Kihlman, M., Medronho, B.F., Romano, A.L., Germgård, U. & Lindman, B.
            2013. Cellulose dissolution in an alkali based solvent: Influence of additives
            and pretreatments. J. Braz. Chem. Soc. 24: 295-303.
  
           Kistler, S.S. 1932. Coherent expanded aerogels. J. Phys. Chem. 63:
            52-64.
            
           Klemm, D., Philipp, B., Heinze, T., Heinze, U. & Wagenknecht, W. 1998. Comprehensive
            Cellulose Chemistry: Fundamentals and Analytical Methods, Volume 1. Wiley‐VCH
              Verlag GmbH. 
  
 Klvana, D., Chaouki, J., Repellin-Lacroix, M. & Pajonk, G. 1989. A new
            method of preparation of aerogel-like materials using a freeze-drying process. Le
              J. Phys. Colloq. 50(C4): C4-29-C4-32.
  
           Kondo, T. 1997. The relationship between intramolecular hydrogen bonds and
            certain physical properties of regioselectively substituted cellulose
            derivatives. J. Polym. Sci. Part B Polym. Phys. 35: 717-723.
  
           Kono, H. & Fujita, S. 2012. Biodegradable superabsorbent hydrogels
            derived from cellulose by esterification crosslinking with
            1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr. Polym. 87:
            2582-2588.
  
           Kumar, A. 2016. Supermacroporous Cryogels: Biomedical and
            Biotechnological Applications. New Jersey: CRC Press.
  
           Kumar, A., Mishra, R., Reinwald, Y. & Bhat, S. 2010. Cryogels:
            Freezing unveiled by thawing. Mater. Today 13: 42-44.
  
           Labafzadeh, S.R. 2015. Cellulose-based materials. Academic Dissertation.
            University of Helsinki (Unpublished).
            
           Leipner, H., Fischer, S., Brendler, E. & Voigt, W. 2000. Structural
            changes of cellulose dissolved in molten salt hydrates. Macromol. Chem.
              Phys. 201: 2041-2049.
  
           Liao, Q., Su, X., Zhu, W., Hua, W., Qian, Z., Liu, L. & Yao, J. 2016.
            Flexible and durable cellulose aerogels for highly effective oil/water
            separation. RSC Adv. 6: 63773-63781.
  
           Lin, R., Li, A., Zheng, T., Lu, L. & Cao, Y. 2015. Hydrophobic and
            flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC
              Adv. 5: 82027-82033.
  
           Lindman, B., Karlström, G. & Stigsson, L. 2010. On the mechanism of
            dissolution of cellulose. J. Mol. Liq. 156: 76-81.
  
           Liu, Q., Liu, J., Qin, S., Pei, Y., Zheng, X. & Tang, K. 2020. High
            mechanical strength gelatin composite hydrogels reinforced by cellulose
            nanofibrils with unique beads-on-a-string morphology. Int. J. Biol.
              Macromol. 164: 1776-1784.
  
           Lue, A., Liu, Y., Zhang, L. & Potthas, A. 2011. Light scattering study
            on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous
            solution. Polymer (Guildf). 52: 3857-3864.
  
           Luo, X. & Zhang, L. 2013. New solvents and functional materials
            prepared from cellulose solutions in alkali/urea aqueous system. Food Res.
              Int. 52: 387-400.
  
           Maharjan, B., Park, J., Kaliannagounder, V.K., Awasthi, G.P., Joshi, M.K.,
            Park, C.H. & Kim, C.S. 2021. Regenerated cellulose nanofiber reinforced
            chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr. Polym. 251:
            117023.
  
           Medronho, B., Romano, A., Miguel, M.G., Stigsson, L. & Lindman, B.
            2012. Rationalizing cellulose (in)solubility: Reviewing basic physicochemical
            aspects and role of hydrophobic interactions. Cellulose 19: 581-587.
  
           Mi, Q.Y., Ma, S.R., Yu, J., He, J.S. & Zhang, J. 2016. Flexible and
            transparent cellulose aerogels with uniform nanoporous structure by a
            controlled regeneration process. ACS Sustain. Chem. Eng. 4: 656-660.
  
           Mirtaghavi, A., Baldwin, A., Tanideh, N., Zarei, M., Muthuraj, R., Cao,
            Y., Zhao, G., Geng, J., Jin, H. & Luo, J. 2020. Crosslinked porous
            three-dimensional cellulose nano fi bers-gelatine biocomposite scaffolds for
            tissue regeneration. Int. J. Biol. Macromol. 164: 1949-1959.
  
           Moon, R.J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J.
            2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40: 3941-3994.
  
           Nagel, M.C.V., Koschella, A., Voiges, K., Mischnick, P. & Heinze, T.
            2010. Homogeneous methylation of wood pulp cellulose dissolved in
            LiOH/urea/H2O. Eur. Polym. J. 46: 1726-1735.
  
           O’Sullivan, A.C. 1997. Cellulose: The structure slowly unravels. Cellulose 4: 173-207.
            
           Padzil, F.N.M., Gan, S., Zakaria, S., Mohamad, S.F., Mohamed, N.H., Seo,
            Y.B. & Ellis, A.V. 2018. Increased solubility of plant core pulp cellulose
            for regenerated hydrogels through electron beam irradiation. Cellulose 25: 4993-5006.
  
           Padzil, F.N.M., Zakaria, S., Chia, C.H., Jaafar, S.N.S., Kaco, H., Gan, S.
  & Ng, P. 2015. Effect of acid hydrolysis on regenerated kenaf core membrane
            produced using aqueous alkaline–urea systems. Carbohydr. Polym. 124:
            164-171.
  
           Pal, K., Banthia, A. & Majumdar, D. 2009. Polymeric hydrogels:
            Characterization and biomedical applications. Des. Monomers Polym. 12:
            197-220.
  
           Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. & Johnson, D.K.
            2010. Cellulose crystallinity index: Measurement techniques and their impact on
            interpreting cellulase performance. Biotechnol. Biofuels 3: 1-10.
  
           Payen, M. 1838. Mémoire sur la composition du tissu propre des plantes et
            du ligneux. Comptes-rendus l’académie des Sci. 7: 1052-1057.
  
           Petitpas, T. 1948. Etude de l’alcali-cellulose: Variations de structure de
            la cellulose dans les lessives alcalines. Compte-rendu du Lab. Cent. des
              Serv. Chim- iques l’Etat 226: 139-147.
  
           Philipp, B., Schleicher, H. & Wagenknecht, W. 1977. Non-aqueous
            solvents of cellulose. Cellul. Chem. Technol. 48: 278-297.
  
           Pierre, A.C. 2011. History of aerogels. In Advances in Sol-Gel Derived
            Materials and Technologies, edited by Aegerter, M.A. & Prassas, M. New
            York: Springer. pp. 3-18.
  
           Pottathara, Y.B., Bobnar, V., Finšgar, M., Grohens, Y., Thomas, S. &
            Kokol, V. 2018. Cellulose nanofibrils-reduced graphene oxide xerogels and
            cryogels for dielectric and electrochemical storage applications. Polymer
              (Guildf) 147: 260-270.
  
           Qi, H., Liebert, T., Meister, F. & Heinze, T. 2009. Homogenous
            carboxymethylation of cellulose in the NaOH/urea aqueous solution. React.
              Funct. Polym. 69: 779-784.
  
           Salleh, K.M., Zakaria, S., Gan, S., Baharin, K.W., Ibrahim, N.A. &
            Zamzamin, R. 2020. Interconnected macropores cryogel with nano-thin crosslinked
            network regenerated cellulose. Int. J. Biol. Macromol. 148: 11-19.
  
           Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S. & Kaco, H. 2019.
            Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium
            carboxymethylcellulose. Int. J. Biol. Macromol. 131: 50-59.
  
           Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H., Jaafar, S.N.
  & Amran, U.A. 2018. Chemically crosslinked hydrogel and its driving force
            towards superabsorbent behaviour. Int. J. Biol. Macromol. 118:
            1422-1430.
  
           Sannino, A., Demitri, C. & Madaghiele, M. 2009. Biodegradable
            cellulose-based hydrogels: Design and applications. Materials (Basel) 2:
            353-373.
  
           Sarko, A., Southwick, J. & Hayashi, J. 1976. Packing analysis of
            carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and
            its relationship to other cellulose polymorphs. Macromolecules 9:
            857-863.
  
           Sen, S., Martin, J.D. & Argyropoulos, D.S. 2013. Review of cellulose
            non-derivatizing solvent interactions with emphasis on activity in inorganic
            molten salt hydrates. ACS Sustain. Chem. Eng. 1: 858-870.
  
           Sescousse, R., Gavillon, R. & Budtova, T. 2011. Aerocellulose from
            cellulose-ionic liquid solutions: Preparation, properties and comparison with
            cellulose-NaOH and cellulose-NMMO routes. Carbohydr. Polym. 83:
            1766-1774.
  
           Shen, Q., 2010. Surface
            properties of cellulose and cellulose derivatives: A review.  In Model Cellulose Surface, edited by Roman, M. Oxford:
              Oxford University Press. pp. 259-289.
  
 Sixta, H. 2006. Handbook of Pulp. Weinheim: Wiley-VCH Verlag GmbH
  & Co. KGaA.
  
           Sobue, H., Kiessig, H. & Hess, K. 1939. Das system
            cellulose–natriumhydroxyd–wasser in abhängigkeit von der temperatur. Zeitschrift
              für Phys. Chemie 43: 309-328.
  
           Stergar, J. & Maver, U. 2016. Review of aerogel-based materials in
            biomedical applications. J. Sol-Gel Sci. Technol. 77: 738-752.
  
           Swatloski, R.P., Spear, S.K., Holbrey, J.D. & Rogers, R.D. 2002.
            Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124:
            4974-4975.
  
           Tamon, H. & Ishizaka, H. 1999. Preparation of organic mesoporous gel
            by supercritical/freeze drying. Dry. Technol. 17: 1653-1665.
  
           Tamon, H., Ishizaka, H., Yamamoto, T. & Suzuki, T. 2001. Freeze drying
            for preparation of aerogel-like carbon. Dry. Technol. 19: 313-324.
  
           Tamon, H., Ishizaka, H., Mikami, M. & Okazaki, M. 1997. Porous
            structure of organic and carbon aerogels synthesized by sol-gel
            polycondensation of resorcinol with formaldehyde. Carbon 35: 791-796.
  
           Liebert,
            T.F., Heinze, T.J. & Edgar, K.J. 2010. Cellulose Solvents: For Analysis, Shaping and Chemical Modification. ACS
            Division of Cellulose and Renewable Materials.
  
 VanBemmelen, J.M. 1894. Der Hydrogel und das kristallinische Hydrat des
            Kupferoxydes. Zeitschrift für Anorg. und Allg. Chemie 5: 466.
  
           Vyas, C., Poologasundarampillai, G., Hoyland, J. & Bartolo, P. 2017. 3D
            Printing of Biocomposites for Osteochondral Tissue Engineering. 2nd ed.
            Biomedical Composites. Elsevier Ltd.
  
           Wang, R., Shou, D., Lv, O., Kong, Y., Deng, L. & Shen, J. 2017.
            pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl
            cellulose and graphene oxide as the carrier. Int. J. Biol. Macromol. 103:
            248-253.
  
           Wang, Y. 2008. Cellulose Fiber Dissolution in Sodium Hydroxide Solution
            at Low Temperature: Dissolution Kinetics and Solubility Improvement. Georgia Institute of Technology.
  
           Wichterle, O. & Lim, D. 1960. Hydrophilic gels for biological use. Nature 185: 117-129.
            
           Wolfrom, M.L. 1955. Advances in Carbohydrate Chemistry. New York:
            Acad. Press Inc. p. 10.
            
           Yahia, L.H., Chirani, N., Gritsch, L., Motta, F.L. & Natta, C.G. 2015.
            History and applications of hydrogels. iMedPub Journals 4: 1-23.
  
           Yamasaki, S., Sakuma, W., Yasui, H., Daicho, K., Saito, T., Fujisawa, S.,
            Isogai, A. & Kanamori, K. 2019. Nanocellulose xerogels with high porosities
            and large specific surface areas. Front. Chem. 7: 1-8.
  
           Zhang, L., Ruan, D. & Gao, S. 2002. Dissolution and regeneration of
            cellulose in NaOH/Thiourea aqueous solution. J. Polym. Sci. Part B Polym.
              Phys. 40: 1521-1529.
  
           Zhou, J. & Zhang, L. 2000. Solubility of cellulose in NaOH/urea
            aqueous solution. Polym. J. 32: 866-870.
  
           Zhou, J., Chang, C., Zhang, R. & Zhang, L. 2007. Hydrogels prepared
            from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol.
              Biosci. 7: 804-809.
  
           Zhou, J., Zhang, L. & Cai, J. 2004. Behavior of cellulose in NaOH/urea
            aqueous solution characterized by light scattering and viscometry. J. Polym.
              Sci. Part B Polym. Phys. 42: 347-353.
  
           
            
             
              
             *Pengarang
            untuk surat-menyurat; email: szakaria@ukm.edu.my 
 
            
 
           
             
             |