Sains Malaysiana 50(10)(2021): 3139-3152

http://doi.org/10.17576/jsm-2021-5010-25

 

Oblique Stagnation-Point Flow Past a Shrinking Surface in a Cu-Al2O3/H2O Hybrid Nanofluid

(Aliran Titik Genangan Serong Nanobendalir Hibrid Cu-Al2O3/H2O terhadap Permukaan Mengecut)

 

RUSYA IRYANTI YAHAYA1, NORIHAN MD ARIFIN1,2*, ROSLINDA MOHD. NAZAR3 & IOAN POP4

 

1Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Mathematics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Department of Mathematics, Babe¸s-Bolyai University, 400084 Cluj-Napoca, Romania

 

Diserahkan: 12 Oktober 2020/Diterima: 2 Februari 2021

 

ABSTRACT

To fill the existing literature gap, the numerical solutions for the oblique stagnation-point flow of Cu-Al2O3/H2O hybrid nanofluid past a shrinking surface are computed and analyzed. The computation, using similarity transformation and bvp4c solver, results in dual solutions. Stability analysis then shows that the first solution is stable with positive smallest eigenvalues. Besides that, the addition of Al2O3 nanoparticles into the Cu-H2O nanofluid is found to reduce the skin friction coefficient by 37.753% while enhances the local Nusselt number by 4.798%. The increase in the shrinking parameter reduces the velocity profile but increases the temperature profile of the hybrid nanofluid. Meanwhile, the increase in the free parameter related to the shear flow reduces the oblique flow skin friction.

 

Keywords: Dual solutions; hybrid nanofluid; oblique stagnation-point; shrinking surface; stability analysis

 

ABSTRAK

Bagi memenuhi jurang kepustakaan sedia ada, penyelesaian numerik bagi aliran titik genangan serong nanobendalir hibrid Cu-Al2O3/H2O terhadap permukaan mengecut telah dihitung dan dianalisis. Pengiraan menggunakan penjelmaan keserupaan dan fungsi bvp4c telah menghasilkan penyelesaian dual. Hasil analisis kestabilan menunjukkan bahawa penyelesaian pertama adalah stabil dengan nilai eigen terkecil positif. Secara puratanya, penambahan nanozarah Al2O3 ke dalam nanobendalir Cu-H2O telah mengurangkan pekali geseran kulit sebanyak 37.753% dan meningkatkan nombor Nusselt tempatan sebanyak 4.798%. Peningkatan parameter mengecut pula dilihat mengurangkan profil halaju nanobendalir hibrid tetapi menyebabkan profil suhunya meningkat. Sementara itu, peningkatan nilai parameter bebas berkaitan aliran sesar telah mengurangkan geseran kulit aliran serong.

 

Kata kunci: Aliran titik genangan serong; analisis kestabilan; nanobendalir hibrid; penyelesaian dual; permukaan mengecut

 

RUJUKAN

Awaludin, I.S., Weidman, P.D. & Ishak, A. 2016. Stability analysis of stagnation-point flow over a stretching/shrinking sheet. AIP Advances 6(4): 045308-1-045308-7.

Devi, S.P.A. & Devi, S.S.U. 2016. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction. International Journal of Nonlinear Sciences and Numerical Simulation 17(5): 249-257.

Devi, S.U. & Devi, S.A. 2017. Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society 36(2): 419-433.

Dorrepaal, J.M. 1986. An exact solution of the Navier-Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions. Journal of Fluid Mechanics 163: 141-147.

Drazin, P.G. & Riley, N. 2006. The Navier-Stokes Equations: A Classification of Flows and Exact Solutions. Volume 13. Cambridge: Cambridge University Press.

Dzulkifli, N.F., Bachok, N., Yacob, N.A., Md Arifin, N. & Rosali, H. 2018. Unsteady stagnation-point flow and heat transfer over a permeable exponential stretching/shrinking sheet in nanofluid with slip velocity effect: A stability analysis. Applied Sciences 8(11): 2172.

Ghaffari, A., Javed, T. & Labropulu, F. 2017. Oblique stagnation point flow of a non-newtonian nanofluid over stretching surface with radiation: A numerical study. Thermal Science 21(5): 2139-2153.

Gökhan, F.S. 2011. Effect of the guess function & continuation method on the run time of matlab bvp solvers. MATLAB-A Ubiquitous Tool for the Practical Engineer. IntechOpen.

Grosan, T., Pop, I., Revnic, C. & Ingham, D.B. 2009. Magnetohydrodynamic oblique stagnation-point flow. Meccanica 44(5): 565.

Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Media 77(2): 267-285.

Hayat, T., Nadeem, S. & Khan, A.U. 2018. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. The European Physical Journal E 41(6): 75.

Hiemenz, K. 1911. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnisches Journal 326: 321-324.

Jamaludin, A., Naganthran, K., Nazar, R. & Pop, I. 2020. MHD mixed convection stagnation-point flow of cu-al2o3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. European Journal of Mechanics-B/Fluids 84: 71-80.

Kadhim, H.T., Jabbar, F.A. & Rona, A. 2020. Cu-Al2O3 hybrid nanofluid natural convection in an inclined enclosure with wavy walls partially layered by porous medium. International Journal of Mechanical Sciences 186: 105889.

Kamal, F.A., Zaimi, K., Ishak, A. & Pop, I. 2019. Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect. Sains Malaysiana 48(1): 243-250.

Khashi’ie, N.S., Md Arifin, N., Pop, I., Nazar, R., Hafidzuddin, E.H. & Wahi, N. 2020. Thermal marangoni flow past a permeable stretching/shrinking sheet in a hybrid Cu-Al2O3/water nanofluid. Sains Malaysiana 49(1): 211-222.

Khashi’ie, N.S., Md Arifin, N., Nazar, R., Hafidzuddin, E.H., Wahi, N. & Pop, I.A. 2019. Stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip. Energies 12(7): 1268.

Labropulu, F. & Li, D. 2008. Stagnation-point flow of a second-grade fluid with slip. International Journal of Non-Linear Mechanics 43(9): 941-947.

Li, D., Labropulu, F. & Pop, I. 2009. Oblique stagnation-point flow of a viscoelastic fluid with heat transfer. International Journal of Non-Linear Mechanics 44(10): 1024-1030.

Lok, Y.Y., Mohd Ishak, A. & Pop, I. 2018. Oblique stagnation slip flow of a micropolar fluid towards a stretching/shrinking surface: A stability analysis. Chinese Journal of Physics 56(6): 3062-3072.

Lok, Y.Y., Merkin, J.H. & Pop, I. 2015. MHD oblique stagnation-point flow towards a stretching/shrinking surface. Meccanica 50(12): 2949-2961.

Lok, Y.Y., Pop, I., Ingham, D.B. & Amin, N. 2009. Mixed convection flow of a micropolar fluid near a non-orthogonal stagnation-point on a stretching vertical sheet. International Journal of Numerical Methods for Heat & Fluid Flow 19(3/4): 459-483.

Mahapatra, T.R. & Gupta, A.S. 2002. Heat transfer in stagnation-point flow towards a stretching sheet. Heat and Mass transfer 38(6): 517-521.

Mahmood, K., Sajid, M., Ali, N., Arshad, A. & Rana, M.A. 2017. Effects of lubrication in the oblique stagnation-point flow of a nanofluid. Microfluidics and Nanofluidics 21(5): 100.

Nadeem, S., Ullah, N. & Khan, A.U. 2019. Impact of oblique stagnation point on MHD micropolar nanomaterial in porous medium over an oscillatory surface with partial slip. Physica Scripta 94(6): 065209.

Naganthran, K., Mohd. Nazar, R. & Pop, I. 2017. Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid. International Journal of Mechanical Sciences 131-132: 663-671.

Rahman, M.M., Grosan, T. & Pop, I. 2016. Oblique stagnation-point flow of a nanofluid past a shrinking sheet. International Journal of Numerical Methods for Heat & Fluid Flow 26(1): 189-213.

Reza, M. & Gupta, A.S. 2010. Some aspects of non-orthogonal stagnation-point flow towards a stretching surface. Engineering 2: 705-709.

Rosca, N.C., Grosan, T. & Pop, I. 2012. Stagnation-point flow and mass transfer with chemical reaction past a permeable stretching/shrinking sheet in a nanofluid. Sains Malaysiana 41(10): 1271-1279.

Sadiq, M.A. 2019. MHD stagnation point flow of nanofluid on a plate with anisotropic slip. Symmetry 11: 132.

Sidik, N.A.C., Adamu, I.M., Jamil, M.M., Kefayati, G.H.R., Mamat, R. & Najafi, G. 2016. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. International Communications in Heat and Mass Transfer 78: 68-79.

Stuart, J.T. 1959. The viscous flow near a stagnation point when the external flow has uniform vorticity. Journal of the Aerospace Sciences 26(2): 124-125.

Suresh, S., Venkitaraj, K.P., Selvakumar, P. & Chandrasekar, M. 2012. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science 38: 54-60.

Tamada, K. 1979. Two-dimensional stagnation-point flow impinging obliquely on a plane wall. Journal of the Physical Society of Japan 46(1): 310-311.

Tooke, R.M. & Blyth, M.G. 2008. A note on oblique stagnation-point flow. Physics of Fluids 20(3): 033101.

Turcu, R., Darabont, A., Nan, A., Aldea, N., Macovei, D., Bica, D., Vekas, L., Pana, O., Soran, M., Koos, A. & Biró, L. 2006. New polypyrrole-multiwall carbon nanotubes hybrid materials. Journal of Optoelectronics and Advanced Materials 8(2): 643-647.

Waini, I., Ishak, A. & Pop, I. 2020. Flow and heat transfer of a hybrid nanofluid past a permeable moving surface. Chinese Journal of Physics 66: 606-619.

Waini, I., Mohd Ishak, A. & Pop, I. 2019. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer 136: 288-297.

Wang, C.Y. 1985. The unsteady oblique stagnation point flow. The Physics of Fluids 28(7): 2046-2049.

Weidman, P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on self-similar boundary layer flow over moving surfaces. International Journal of Engineering Science 44: 730-737.

 

*Pengarang untuk surat-menyurat; email: norihanarifin@yahoo.com

 

 

 

 

sebelumnya