Sains
Malaysiana 50(10)(2021): 3139-3152
http://doi.org/10.17576/jsm-2021-5010-25
Oblique
Stagnation-Point Flow Past a Shrinking Surface in a Cu-Al2O3/H2O
Hybrid Nanofluid
(Aliran Titik
Genangan Serong Nanobendalir Hibrid Cu-Al2O3/H2O
terhadap Permukaan Mengecut)
RUSYA IRYANTI YAHAYA1, NORIHAN MD
ARIFIN1,2*, ROSLINDA MOHD. NAZAR3 & IOAN POP4
1Institute for Mathematical Research, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Mathematics, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
3School of Mathematical Sciences, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Department of Mathematics, Babe¸s-Bolyai University, 400084 Cluj-Napoca,
Romania
Diserahkan: 12 Oktober 2020/Diterima: 2
Februari 2021
ABSTRACT
To fill the existing literature gap, the numerical
solutions for the oblique stagnation-point flow of Cu-Al2O3/H2O
hybrid nanofluid past a shrinking surface are computed and analyzed. The
computation, using similarity transformation and bvp4c solver, results in dual
solutions. Stability analysis then shows that the first solution is stable with
positive smallest eigenvalues. Besides that, the addition of Al2O3 nanoparticles into the Cu-H2O nanofluid is found to reduce the skin
friction coefficient by 37.753% while enhances the local Nusselt number by
4.798%. The increase in the shrinking parameter reduces the velocity profile
but increases the temperature profile of the hybrid nanofluid. Meanwhile, the
increase in the free parameter related to the shear flow reduces the oblique
flow skin friction.
Keywords: Dual solutions; hybrid nanofluid; oblique
stagnation-point; shrinking surface; stability analysis
ABSTRAK
Bagi memenuhi jurang kepustakaan sedia ada,
penyelesaian numerik bagi aliran titik genangan serong nanobendalir hibrid
Cu-Al2O3/H2O terhadap permukaan mengecut telah
dihitung dan dianalisis. Pengiraan menggunakan penjelmaan keserupaan dan fungsi
bvp4c telah menghasilkan penyelesaian dual. Hasil analisis kestabilan
menunjukkan bahawa penyelesaian pertama adalah stabil dengan nilai eigen
terkecil positif. Secara puratanya, penambahan nanozarah Al2O3 ke dalam nanobendalir Cu-H2O telah mengurangkan pekali geseran kulit
sebanyak 37.753% dan meningkatkan nombor Nusselt tempatan sebanyak 4.798%.
Peningkatan parameter mengecut pula dilihat mengurangkan profil halaju
nanobendalir hibrid tetapi menyebabkan profil suhunya meningkat. Sementara itu,
peningkatan nilai parameter bebas berkaitan aliran sesar telah mengurangkan
geseran kulit aliran serong.
Kata kunci: Aliran titik genangan serong; analisis
kestabilan; nanobendalir hibrid; penyelesaian dual; permukaan mengecut
RUJUKAN
Awaludin, I.S.,
Weidman, P.D. & Ishak, A. 2016. Stability analysis of stagnation-point
flow over a stretching/shrinking sheet. AIP Advances 6(4):
045308-1-045308-7.
Devi, S.P.A. &
Devi, S.S.U. 2016. Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water
nanofluid flow over a permeable stretching sheet with suction. International
Journal of Nonlinear Sciences and Numerical Simulation 17(5): 249-257.
Devi, S.U. &
Devi, S.A. 2017. Heat transfer enhancement of Cu-Al2O3/water
hybrid nanofluid flow over a stretching sheet. Journal of the
Nigerian Mathematical Society 36(2): 419-433.
Dorrepaal, J.M.
1986. An exact solution of the Navier-Stokes equation which describes
non-orthogonal stagnation-point flow in two dimensions. Journal of Fluid
Mechanics 163: 141-147.
Drazin, P.G. &
Riley, N. 2006. The Navier-Stokes Equations: A Classification of Flows and
Exact Solutions. Volume 13.
Cambridge: Cambridge University Press.
Dzulkifli, N.F.,
Bachok, N., Yacob, N.A., Md Arifin, N. & Rosali, H. 2018. Unsteady
stagnation-point flow and heat transfer over a permeable exponential
stretching/shrinking sheet in nanofluid with slip velocity effect: A stability
analysis. Applied Sciences 8(11): 2172.
Ghaffari, A.,
Javed, T. & Labropulu, F. 2017. Oblique stagnation point flow of a
non-newtonian nanofluid over stretching surface with radiation: A numerical
study. Thermal Science 21(5): 2139-2153.
Gökhan, F.S.
2011. Effect of the guess function & continuation method on the run time of
matlab bvp solvers. MATLAB-A Ubiquitous Tool for the Practical Engineer.
IntechOpen.
Grosan, T., Pop,
I., Revnic, C. & Ingham, D.B. 2009. Magnetohydrodynamic oblique
stagnation-point flow. Meccanica 44(5): 565.
Harris, S.D.,
Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow
near the stagnation point on a vertical surface in a porous medium: Brinkman
model with slip. Transport in Porous Media 77(2): 267-285.
Hayat, T., Nadeem,
S. & Khan, A.U. 2018. Rotating flow of Ag-CuO/H2O hybrid
nanofluid with radiation and partial slip boundary effects. The
European Physical Journal E 41(6): 75.
Hiemenz, K. 1911.
Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten
geraden Kreiszylinder. Dinglers Polytechnisches Journal 326: 321-324.
Jamaludin, A.,
Naganthran, K., Nazar, R. & Pop, I. 2020. MHD mixed convection
stagnation-point flow of cu-al2o3/water hybrid nanofluid over a permeable
stretching/shrinking surface with heat source/sink. European Journal of
Mechanics-B/Fluids 84: 71-80.
Kadhim, H.T., Jabbar,
F.A. & Rona, A. 2020. Cu-Al2O3 hybrid nanofluid
natural convection in an inclined enclosure with wavy walls partially layered
by porous medium. International Journal of Mechanical Sciences 186:
105889.
Kamal, F.A., Zaimi,
K., Ishak, A. & Pop, I. 2019. Stability analysis of MHD stagnation-point
flow towards a permeable stretching/shrinking sheet in a nanofluid with
chemical reactions effect. Sains Malaysiana 48(1): 243-250.
Khashi’ie, N.S., Md
Arifin, N., Pop, I., Nazar, R., Hafidzuddin, E.H. & Wahi, N. 2020. Thermal
marangoni flow past a permeable stretching/shrinking sheet in a hybrid Cu-Al2O3/water
nanofluid. Sains Malaysiana 49(1): 211-222.
Khashi’ie, N.S., Md
Arifin, N., Nazar, R., Hafidzuddin, E.H., Wahi, N. & Pop, I.A. 2019.
Stability analysis for magnetohydrodynamics stagnation point flow with zero
nanoparticles flux condition and anisotropic slip. Energies 12(7): 1268.
Labropulu, F. &
Li, D. 2008. Stagnation-point flow of a second-grade fluid with slip. International
Journal of Non-Linear Mechanics 43(9): 941-947.
Li, D., Labropulu,
F. & Pop, I. 2009. Oblique stagnation-point flow of a viscoelastic fluid
with heat transfer. International Journal of Non-Linear Mechanics 44(10): 1024-1030.
Lok, Y.Y., Mohd
Ishak, A. & Pop, I. 2018. Oblique stagnation slip flow of a micropolar
fluid towards a stretching/shrinking surface: A stability analysis. Chinese
Journal of Physics 56(6): 3062-3072.
Lok, Y.Y., Merkin,
J.H. & Pop, I. 2015. MHD oblique stagnation-point flow towards a
stretching/shrinking surface. Meccanica 50(12): 2949-2961.
Lok, Y.Y., Pop, I.,
Ingham, D.B. & Amin, N. 2009. Mixed convection flow of a micropolar fluid
near a non-orthogonal stagnation-point on a stretching vertical sheet.
International Journal of Numerical Methods for Heat & Fluid Flow 19(3/4): 459-483.
Mahapatra, T.R.
& Gupta, A.S. 2002. Heat transfer in stagnation-point flow towards a
stretching sheet. Heat and Mass transfer 38(6): 517-521.
Mahmood, K., Sajid,
M., Ali, N., Arshad, A. & Rana, M.A. 2017. Effects of lubrication in the
oblique stagnation-point flow of a nanofluid. Microfluidics and Nanofluidics 21(5): 100.
Nadeem, S., Ullah,
N. & Khan, A.U. 2019. Impact of oblique stagnation point on MHD micropolar
nanomaterial in porous medium over an oscillatory surface with partial slip. Physica
Scripta 94(6): 065209.
Naganthran, K.,
Mohd. Nazar, R. & Pop, I. 2017. Stability analysis of impinging oblique
stagnation-point flow over a permeable shrinking surface in a viscoelastic
fluid. International Journal of Mechanical Sciences 131-132: 663-671.
Rahman, M.M.,
Grosan, T. & Pop, I. 2016. Oblique stagnation-point flow of a nanofluid
past a shrinking sheet. International Journal of Numerical Methods for Heat
& Fluid Flow 26(1): 189-213.
Reza, M. &
Gupta, A.S. 2010. Some aspects of non-orthogonal stagnation-point flow towards
a stretching surface. Engineering 2: 705-709.
Rosca, N.C.,
Grosan, T. & Pop, I. 2012. Stagnation-point flow and mass transfer with
chemical reaction past a permeable stretching/shrinking sheet in a nanofluid. Sains
Malaysiana 41(10): 1271-1279.
Sadiq, M.A. 2019.
MHD stagnation point flow of nanofluid on a plate with anisotropic slip. Symmetry 11: 132.
Sidik, N.A.C.,
Adamu, I.M., Jamil, M.M., Kefayati, G.H.R., Mamat, R. & Najafi, G.
2016. Recent progress on hybrid nanofluids in heat transfer applications:
A comprehensive review. International Communications in Heat and Mass
Transfer 78: 68-79.
Stuart, J.T. 1959.
The viscous flow near a stagnation point when the external flow has uniform
vorticity. Journal of the Aerospace Sciences 26(2): 124-125.
Suresh, S.,
Venkitaraj, K.P., Selvakumar, P. & Chandrasekar, M. 2012. Effect of Al2O3–Cu/water
hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science 38: 54-60.
Tamada, K. 1979.
Two-dimensional stagnation-point flow impinging obliquely on a plane wall. Journal
of the Physical Society of Japan 46(1): 310-311.
Tooke, R.M. &
Blyth, M.G. 2008. A note on oblique stagnation-point flow. Physics of Fluids 20(3): 033101.
Turcu, R.,
Darabont, A., Nan, A., Aldea, N., Macovei, D., Bica, D., Vekas, L., Pana, O.,
Soran, M., Koos, A. & Biró, L. 2006. New polypyrrole-multiwall carbon
nanotubes hybrid materials. Journal of Optoelectronics and Advanced
Materials 8(2): 643-647.
Waini, I., Ishak,
A. & Pop, I. 2020. Flow and heat transfer of a hybrid nanofluid past a
permeable moving surface. Chinese Journal of Physics 66: 606-619.
Waini, I., Mohd
Ishak, A. & Pop, I. 2019. Unsteady flow and heat transfer past a
stretching/shrinking sheet in a hybrid nanofluid. International Journal of
Heat and Mass Transfer 136: 288-297.
Wang, C.Y. 1985.
The unsteady oblique stagnation point flow. The Physics of Fluids 28(7):
2046-2049.
Weidman, P.D.,
Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on
self-similar boundary layer flow over moving surfaces. International Journal
of Engineering Science 44: 730-737.
*Pengarang untuk surat-menyurat; email:
norihanarifin@yahoo.com
|