Sains Malaysiana 44(1)(2015): 101–106
Optimizing
the Performance of a Paper Mill Effluent Treatment
(Mengoptimumkan Prestasi Aliran Keluar Sisa Rawatan Kilang Kertas)
MOETAZ ELSERGANY1*, AMIMUL AHSAN2 & MD. MANIRUZZAMAN A. AZIZ3,4
1School
of Health & Environmental Studies, Hamdan Bin
Mohammed Smart University
Dubai,
United Arab Emirates
2Department of Civil
Engineering and Institute of Advanced Technology, Universiti Putra Malaysia
43400 Serdang, Selangor Darul Ehsan, Malaysia
3Faculty
of Civil Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai,
Johor Darul Takzim, Malaysia
4UTM
Construction Research Center (CRC), Universiti Teknologi Malaysia (UTM)
81310 Skudai, Johor Darul Takzim, Malaysia
Received:
29 May 2014/Accepted: 7 July 2014
ABSTRACT
The paper making industry is characterized by high rate of water
consumption and hence high rate of wastewater generation. The purpose of this
research was to assess and optimize the existing complete mix activate sludge
treatment plant that is used to treat the high strength paper mill effluent
with the highest possible efficiency at a reasonable cost. The collected paper
mill wastewater is equalized in an equalization tank before being pumped to the
treatment plant. The treatment plant includes chemical treatment unit, complete
mix activated sludge and granular media filtration unit. The results showed
that effluent of a chemical treatment unit was found to be relatively similar
to the laboratory simulated plain sedimentation unit. It can be concluded that
addition of chemical coagulant can be eliminated with an overall saving of
chemical addition costs. The complete mixing activated sludge achieved good
removal of biochemical oxygen demand (BOD) and chemical oxygen demand (COD).
Furthermore, the results showed that the plant is operated under low BOD:P ratio. The treatment efficiency of the plant can be
improved by increasing the phosphorous dose to the plant to have BOD:P ratio of 100:0.5 to 100:1. It was found that 50% of the
treated effluent is recycled to the manufacturing process, however this
percentage can be increased through proper plant optimization and control of
nutrient addition to the activated sludge unit.
Keywords: Activated sludge; nutrient balance; paper mill effluent;
paper recycling
ABSTRAK
Industri pembuatan kertas dicirikan oleh kadar penggunaan air yang tinggi dan dengan itu tinggi kadar penjanaan air kumbahan. Kajian ini bertujuan untuk menilai dan mengoptimumkan loji rawatan campuran lengkap enap cemar aktif yang digunakan untuk merawat aliran keluar kilang kertas berkualiti tinggi dengan kecekapan tertinggi pada harga yang berpatutan. Air sisa kilang kertas terkumpul dalam tangki penyamaan sebelum disalur ke loji rawatan. Loji rawatan adalah termasuk unit rawatan kimia, campuran lengkap enap cemar yang diaktifkan dan unit penapisan media butiran. Keputusan menunjukkan bahawa aliran keluar unit rawatan kimia didapati agak serupa dengan unit makmal simulasi pemendapan kosong. Dapat disimpulkan bahawa penambahan coagulant kimia boleh dihapuskan dengan penjimatan untuk keseluruhan kos tambahan kimia. Campuran lengkap enap cemar yang diaktifkan mencapai penyingkiran yang baik untuk permintaan oksigen biokimia (BOD) dan permintaan oksigen kimia (COD). Selain itu, hasil kajian menunjukkan bahawa loji dikendalikan di bawah nisbah BOD:
P rendah. Kecekapan loji rawatan boleh diperbaiki dengan meningkatkan dos fosforus ke loji untuk nisbah BOD: P 100:0.5 ke 100:1. Didapati 50% aliran keluar terawat yang dikitar semula dalam proses pembuatan, namun peratusan ini boleh ditingkatkan melalui pengoptimuman semula loji dan kawalan nutrien tambahan kepada unit enap cemar yang diaktifkan.
Kata kunci: Aliran keluar kilang kertas; diaktifkan enap cemar; kertas kitar semula; keseimbangan nutrien
REFERENCES
Ammary Bashaar, Y.
2004. Nutrients requirements in biological industrial
wastewater treatment. African Journal of Biotechnology 3(4):
236-238.
Blanco, A., Negro, C., Monte, C., Fuente, E. & Tijero, J. 2004. Peer reviewed: The
challenges of sustainable papermaking. Environmental Science &
Technology 38(21): 414A-420A.
Eaton,
A.D. & Franson, M.A.H. 2005. Standard
Methods for the Examination of Water & Wastewater. 21st ed.
Washington DC, USA: Amer Public Health Association.
General Environmental Law and its executive order for
Kingdom of Saudi Arabia. 2013. Presidency of Meteorology and
Environment 2001. http://www.pme.gov.sa/EnvARules. pdf.
Accessed on January 2013.
Greenberg,
A.E., Klein, G. & Kaufman, W.J. 1955. Effect of
phosphorus on the activated sludge process. Sewage and Industrial
Wastes 27(3): 277-282.
Lens, P., Hulshoff Pol, L., Wilderer, P. & Asano, T. 2002. Water
Recycling and Resource Recovery in Industry: Analysis, Technologies and
Implementation. London: IWA Publishing.
Lindblom, E., Rosen, C., Vanrolleghem,
P.A., Olsson, L.E. & Jeppsson, U. 2004. Modelling a nutrient deficient wastewater treatment process. Paper read at
Fourth IWA World Water Conference, Marrakech, Morocco.
MacKinney, R.W.J. 1995. Technology
of Paper Recycling. New Jersey: Blackie Academic and
Professional.
Marsh,
K. & Bugusu, B. 2007. Food
packaging - roles, materials, and environmental issues. Journal of
Food Science 72(3): R39-R55.
Miranda, R., Blanco, A. & Negro, C. 2009. Accumulation of dissolved and colloidal material in papermaking -
Application to simulation. Chemical Engineering Journal 148(2-3):
385-393.
Möbius, C.H. 2006. Water Use and
Wastewater Treatment in Papermills: Books on
Demand.
Monte, M.C., Fuente, E., Blanco, A. & Negro, C. 2009. Waste management from pulp and paper production in the European Union. Waste
Management 29(1): 293-308.
Nemerow, N.L. 2010. Industrial Waste
Treatment: Contemporary Practice and Vision for the Future. Burlington: Butterworth-Heinemann.
Pokhrel, D. & Viraraghavan, T. 2004. Treatment of pulp and paper mill wastewater-a review. The
Science of the Total Environment 333(1-3): 37.
Rintala, J.A. & Puhakka,
J.A. 1994. Anaerobic treatment in pulp-and paper-mill waste management: A review. Bioresource Technology 47(1): 1-18.
Saunamaki, R. 1997. Activated sludge plants in
Finland. Water Science and Technology 35(2-3): 235-243.
Slade, A., Thorn, G. & Dennis, M. 2011. The relationship between BOD: N ratio and wastewater treatability in a
nitrogen-fixing wastewater treatment system. Water Science & Technology 63(4):
627-632.
Tchobanoglous, G., Burton, F. & Stensel,
H.D. 2003. Wastewater Engineering: Treatment and Reuse. New
York: Metcalf and Eddy, McGraw-Hill.
Thompson, G., Swain, J., Kay, M. & Forster, C.F. 2001. The treatment of pulp and paper mill effluent: A review. Bioresource Technology 77(3): 275-286.
WPO.
2008. Market statistics and future trends in global packaging. World packaging organisation. http://www. worldpackaging.org/uploads/paperpublished/2_pdf.
Accessed on 21 April 2013.
*Corresponding
author; email: m.elsergany@hbmsu.ac.ae
|