Sains Malaysiana 47(6)(2018): 1303–1310
http://dx.doi.org/10.17576/jsm-2018-4706-27
Tensile
Properties, Biodegradability and Bioactivity of Thermoplastic Starch (TPS)/
Bioglass Composites for Bone Tissue Engineering
(Sifat Tegangan,
Keterbiodegradan dan Kebioaktifan Komposit Kanji Termoplastik (TPS)/Biokaca
untuk Kejuruteraan Tisu Tulang)
SYED NUZUL
FADZLI
SYED
ADAM1*,
AZLIN
FAZLINA
OSMAN2 & ROSLINDA SHAMSUDIN1
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Center of Excellence
Geopolymer and Green Technology (CEGeoGTech), School of Materials
Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Jejawi,
Arau, Perlis Indera Kayangan,
Malaysia
Received:
3 October 2017/Accepted: 26 January 2018
ABSTRACT
Composite fabricated from the combination of biodegradable polymer
and bioactive filler is beneficial for bone tissue engineering if
the biomaterial can perform similar characteristics of the natural
inorganic-organic structures of bone. In this study, we have investigated
the thermoplastic starch (TPS)/sol-gel derived bioglass composite
as new biomaterial for bone tissue engineering. The composites were
produced using selected TPS/bioglass mass ratio of 100/0, 95/5,
90/10, 85/15 and 80/20 by a combination of solvent casting and salt
leaching techniques. Tensile test results showed the addition of
bioglass increased the tensile strength and Young's modulus, but
reduced the elongation at break of the samples. The modulus
of all samples were higher than the requirement for cancellous
bone (10-20 MPa). The SEM
imaging showed the presence of porous structure on
the surface of all samples. XRD
results confirmed the formation of hydroxycarbonate
apatite (HCA)
layer on the surface of bioglass containing samples; indicating
the occurrence of surface reactions when the samples were immersed
in Simulated Body Fluid (SBF). Furthermore, the presence of P-O
stretch band in FTIR spectrum
between 1000 and 1150 cm-1 and
Si-O-Si stretch band at 1000 cm-1 also
proved the bioactivity of TPS/bioglass composite. The in vitro biodegradability analysis shows the
biodegradability of TPS/bioglass composite decreases with
increasing mass ratio of the bioglass.
Keywords: Bioactivity; biodegradability; bioglass; polymer
composite; thermoplastic starch
ABSTRAK
Komposit yang difabrikasikan daripada gabungan
polimer terbiodegradasi dan pengisi bioaktif adalah berfaedah untuk
kejuruteraan tisu tulang jika bahan bio tersebut boleh menghasilkan
ciri-ciri yang serupa dengan struktur inorganik-organik semula jadi
tulang. Di dalam kajian ini, kami
mengkaji komposit kanji termoplastik (TPS)/biokaca berasaskan sol-gel
sebagai bahan bio baharu untuk kejuruteraan tisu tulang.
Komposit tersebut dihasilkan mengikut nisbah berat yang terpilih
iaitu 100/0, 95/5, 90/10, 85/15 dan 80/20 dengan menggunakan gabungan
teknik penuangan pelarut dan larut lesap garam. Keputusan
ujian tegangan mendedahkan penambahan biokaca dalam matriks TPS telah meningkatkan kekuatan
tegangan dan modulus Young di samping merendahkan pemanjangan takat
putus sampel. Modulus semua sampel adalah
lebih tinggi daripada nilai diperlukan tulang berongga. Pengimejan
SEM
mendedahkan kewujudan struktur berliang di permukaan
semua sampel. Keputusan XRD mengesahkan pembentukan lapisan hidroksikarbonat
apatit (HCA) pada permukaan sampel mengandungi
biokaca, menunjukkan berlakunya reaksi permukaan apabila sampel
direndam dalam cecair badan simulasi (SBF). Tambahan pula, spektrum
FTIR
menunjukkan kehadiran jalur regangan P-O antara 1000
dan 1150 cm-1
dan jalur regangan Si-O-Si pada 1000 cm-1, juga membuktikan sifat
bioaktif komposit TPS/ biokaca. Analisis
keterbiodegradasian in vitro pada
komposit menunjukkan keterbiodegradasian komposit TPS/biokaca
berkurangan dengan peningkatan nisbah berat biokaca.
Kata kunci: Biokaca; kanji termoplastik (TPS); bioaktiviti; keterbiodegradan; komposit
polimer
REFERENCES
Allo, B.A., Costa, D.O., Dixon, S.J.,
Mequanint, K. & Rizkalla, A.S. 2012. Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone
regeneration. Journal of Functional Biomaterials 3(4): 432–463.
Arjmandi, R., Hassan, A., Majeed, K.
& Zakaria, Z. 2015. Rice husk filled
polymer composites. International Journal of Polymer
Science 2015. Article ID.
501471.
Bao, C.L.M., Teo, E.Y., Chong, M.S.K., Liu, Y., Choolani, M.
& Chan, J.K.Y. 2013. Advances in bone tissue engineering. In Regenerative Medicine and Tissue Engineering (Book Chapter), edited
by Andrades, J.A. www.intechopen.com. pp. 599-614.
Black, C.R.M., Goriainov, V., Gibbs, D., Kanczler, J., Tare,
R.S. & Oreffo, R.O.C. 2015. Bone tissue engineering. Current Molecular Biology Reports 3: 132-140.
Borges, J.A., Romani, V.P., Cortez-Vega,
W.R. & Martins, V.G. 2015. Influence of different starch sources and plasticizers on properties of
biodegradable films. International Food Research Journal 22(6):
2346-2351.
Burg, K.J., Porter, S. & Kellam,
J.F. 2000. Biomaterial
developments for bone tissue engineering. Biomaterials 21(23):
2347-2359.
Cancedda, R., Giannoni, P. &
Mastrogiacomo, M. 2007. A tissue engineering
approach to bone repair in large animal models and in clinical practice. Biomaterials 28(29): 4240-4250.
Dai, H., Chang, P.R., Yu, J. & Ma,
X. 2008. N,N-Bis(2-
hydroxyethyl)formamide as a new plasticizer for thermoplastic starch. Starch 60(12): 676-684.
Fadzli, S.A.S.N., Roslinda, S., Zainuddin, F. & Ismail,
H. 2016. Synthesis of sol-gel derived glass powder and in vitro bioactivity
property tested in simulated body fluid. AIP Conference
Proceedings 1784 Art. No: 040033.
Félix, A., Almeida, E. De, Cristina, E.
& Ortega, A. 2011. Synthesis of
chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for
guided tissue regeneration purposes. Applied Surface Science 257:
3888-3892.
Fu, Q., Saiz, E., Rahaman, M.N. &
Tomsia, A.P. 2011. Bioactive glass scaffolds for bone
tissue engineering: State of the art and future perspectives. Materials
Science & Engineering C 31(7): 1245-1256.
Hench, L.L. & Wilson, J. 2013. An
Introduction to Bioceramics. 2nd ed. London: Imperial College Press.
Hutmacher, D.W. 2001. Scaffold design and fabrication
technologies for engineering tissues - state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition 12(1): 107-124.
Jahan, K. & Tabrizian, M. 2016. Composite biopolymers for bone
regeneration enhancement in bony defects. Biomaterial Science 4(1):
25-39.
Jones, J.R., Lin, S., Yue, S., Lee,
P.D., Hanna, J.V., Smith, M.E. & Newport, R.J. 2010. Bioactive glass scaffolds for bone regeneration and their
hierarchical characterisation. Proceeding Inst. Mech. Eng. H. 224:
1373-1387.
Kokubo, T. & Hiroaki Takadama, H. 2006. How useful is
SBF in predicting in vivo bone bioactivity? Biomaterials 27:
2907-2915.
Laurencin, C., Khan, Y., Kofron, M.,
Al-Amin, S., Botchwey, E., Yu, X. & Cooper, J.J. 2006. The ABJS Nicolas Andry Award: Tissue engineering of bone
and ligament: A 15-year perspective. Clinical Orthopaedics and Related
Research 447: 221-236.
Martins, A.M., Alves, C.M., Kasper,
F.K., Mikos, A.G. & Reis, R.L. 2010. Responsive and in situ-forming chitosan scaffolds for bone tissue
engineering applications: An overview of the last decade. Journal of
Materials Chemistry 20: 1638-1645.
Mehrali, M., Moghaddam, E. & Seyed
Shirazi, S.F. 2014. Mechanical and in
vitro biological performance of graphene nanoplatelets reinforced calcium
silicate composite. PLOS ONE 9(9): e106802.
Ramazan, K. & Joseph Irudayaraj,
K.S. 2002. Characterization of irradiated
starches by using ft-Raman and FTIR spectroscopy. Agriculture and Food
Chemistry 50: 3912-3918.
Rezwan, K., Chen, Q.Z., Blaker, J.J. & Roberto, A. 2006.
Biodegradable and bioactive porous polymer / inorganic composite scaffolds for
bone tissue engineering. Biomaterials 27: 3413–3431.
Shi, R., Ding, T., Liu, Q. & Han, Y. 2006. In vitro degradation
and swelling behaviour of rubbery thermoplastic starch in simulated body and
simulated saliva fluid and effects of the degradation products on cells. 91. Polymer
Degradation and Stability 91(12): 3289-3300.
Xu, J., Liu, L. & De, Z.X. 2015. Promoting bone-like
apatite formation on titanium alloys through nanocrystalline tantalum nitride
coatings. Journal of Materials Chemistry B 3: 4082-4094.
Zeng,
H. & Lace, W.R. 2000. XPS, EDX and FTIR analysis of pulsed laser deposited
calcium phosphate bioceramic coatings: The effects of various process
parameters. Biomaterial 21: 23-30.
*Corresponding
author: syed.nuzul@unimap.edu.my
|