Sains Malaysiana 47(6)(2018): 1319–1326
http://dx.doi.org/10.17576/jsm-2018-4706-29
A
New Discordancy Test on a Regression for Cylindrical Data
(Ujian Ketakselanjaran
Terbaru ke atas Regresi untuk Data Silinder)
NURUL HIDAYAH SADIKON, ADRIANA IRAWATI NUR IBRAHIM*, IBRAHIM MOHAMED
& DHARINI PATHMANATHAN
Institute of Mathematical Sciences, University of Malaya, 50603
Kuala Lumpur, Malaysia
Received: 12 May 2017/Accepted:
6 February 2018
ABSTRACT
A cylindrical data set consists of circular and linear variables.
We focus on developing an outlier detection procedure for cylindrical
regression model proposed by Johnson and Wehrly (1978) based on
the k-nearest neighbour approach. The procedure is applied based
on the residuals where the distance between two residuals is measured
by the Euclidean distance. This procedure can be used to detect
single or multiple outliers. Cut-off points of the test statistic
are generated and its performance is then evaluated via simulation.
For illustration, we apply the test on the wind data set obtained
from the Malaysian Meteorological Department.
Keywords: Circular-linear; cylindrical data; k-nearest neighbour's
distance; outlier
ABSTRAK
Data silinder adalah data yang mengandungi pemboleh
ubah bulatan dan linear. Kami memberi tumpuan kepada pembangunan prosedur
pengecaman nilai tersisih untuk model regresi silinder yang dicadangkan
oleh Johnson dan Wehrly (1978) dengan menggunakan pendekatan jiran
k-terdekat. Prosedur tersebut adalah
berdasarkan nilai-nilai reja dengan jarak di antara dua reja diukur
menggunakan jarak Euclidean. Prosedur
ini boleh digunakan untuk mengesan nilai tersisih tunggal atau
berbilang. Titik potongan untuk statistik
ujian dijana dan prestasi bagi ujian tersebut dikaji secara simulasi.
Untuk ilustrasi, kami menggunakan set data angin yang diperoleh
daripada Jabatan Meteorologi Malaysia.
Kata kunci: Bulatan-linear; data silinder; jarak
jiran k-terdekat; nilai tersisih
REFERENCES
Abuzaid, A., Mohamed, I., Hussin, A.G.
& Rambli, A. 2011. Covratio
statistic for simple circular regression model. Chiang Mai Journal of
Science 38(3): 321-330.
Abuzaid, A., Hussin, A. & Mohamed,
I. 2013. Detection of outliers in simple
circular regression models using mean circular error statistic. Journal of
Statistical Computation and Simulation 83(2): 269-277.
Barrett, B.E. & Ling, R.F. 1992. General classes of
influence measures for multivariate regression. Journal
of the American Statistical Association 87(417): 184-191.
Barnett, V. & Lewis, T. 1978. Outliers in Statistical Data. 2nd ed. New York: John Wiley & Sons.
Cook, R.D. 1977. Detection of influential
observations in linear regression. Econometrics 19(1): 15-18.
David, H.A. 1981. Order Statistic. New York: Wiley.
Hadi, A.S. & Simonoff, J.S. 1993. Procedures
for the identification of multiple outliers in linear models. Journal
of the American Statistical Association 88(424): 1264-1272.
Ibrahim, S., Rambli, A., Hussin, A.
& Mohamed, I. 2013. Outlier
detection in a circular regression model using covratio statistic. Communications in Statistics - Simulation and Computation 42(10):
2272-2280.
Jammalamadaka, S.R. & SenGupta, A. 2001. Topics in Circular Statistics. World Scientific.
Johnson, R.A. & Wehrly, T.E. 1978. Some angular-linear
distributions and related regression models. J. Am. Stat. Assoc. 73(363):
602-606.
Qin, X., Jiang, S.Z. & Xiao, D.Y.
2011. A nonparametric
circular-linear multivariate regression model with a rule-of-thumb bandwidth selector. Computers and Mathematics with Applications 62(8): 3048-3055.
Rambli, A., Ali, A., Mohamed, I. &
Hussin, A.G. 2016. Procedure for
detecting outliers in circular regression model. PLoS ONE 11(4):
e0153074.
SenGupta, A. & Ugwuowo, F. 2006. Asymmetric circular-linear multivariate regression models
with applications to environmental data. Environmental and
Ecological Statistics 13(3): 299-309.
Srikantan, K.S. 1961. Testing for the single outlier in a
regression models. Sankhya Series A 23(3): 251-260.
Srivastava, M.S. & Rosen, D. 1998. Outliers
in multivariate regression models. Journal of Multivariate Analysis 65(2):
195-208.
*Corresponding author; email: adrianaibrahim@um.edu.my