Sains Malaysiana 48(5)(2019):
1137–1149
http://dx.doi.org/10.17576/jsm-2019-4805-23
Three-Dimensional Bioconvection
Nanofluid Flow from a Bi-Axial Stretching
Sheet with Anisotropic Slip
(Aliran Nanobendalir Bioperolakan
Tiga Matra daripada
Lembaran Regangan
Dua Paksi dengan
Gelincir Anisotropi)
NUR ARDIANA
AMIRSOM1,
M.J.
UDDIN2,
MD.
FAISAL
MD
BASIR1*,
A.I.M ISMAIL1,
O.
ANWAR
BÉG3
& ALI KADIR3
1School of Mathematics
Sciences, Universiti Sains
Malaysia, 11800 Pulau Pinang, Malaysia
2Department of Mathematics,
American International University- Bangladesh, Kuratoli,
Dhaka, 1229, Bangladesh
3Aeronautical and
Mechanical Engineering Department, School of Computing, Science
and Engineering, Newton Building, University of Salford,
M54WT, United Kingdom
Received: 24 December
2018/Accepted: 16 March 2019
ABSTRACT
A theoretical study is presented
for three-dimensional flow of bioconvection
nanofluids containing gyrotactic
micro-organisms over a bi-axial stretching sheet. The effects
of anisotropic slip, thermal jump and mass slip are considered
in the mathematical model. Suitable similarity transformations
are used to reduce the partial differential equation system
into a nonlinear ordinary differential system. The transformed
nonlinear ordinary differential equations with appropriate transformed
boundary conditions are solved numerically with the bvp4c procedure
in the symbolic software, MATLAB. The mathematical computations showed that an increase
in Brownian motion parameter corresponds to a stronger thermophoretic force which encourages transport of nanoparticles
from the hot bi-axial sheet to the quiescent fluid. This increases
the nanoparticle volume fraction boundary layer. Fluid temperature
and thermal boundary layer thickness are decreased with increasing
stretching rate ratio of the bi-axial sheet. The present simulation
is of relevance in the fabrication of bio-nanomaterials and
thermally-enhanced media for bio-inspired fuel cells.
Keywords: Anisotropic slip; bioconvection; mass slip; microorganisms; nanofluids, thermal slip
ABSTRAK
Satu kajian secara teori
dibentangkan untuk
aliran tiga matra
nanobendalir bioperolakan
yang mengandungi mikroorganisma
girotaktik yang melalui
lembaran regangan dua-paksi. Kesan gelincir anisotropi, haba dan jisim
telah dipertimbangkan
dalam model matematik. Transformasi persamaan yang sesuai digunakan untuk menurunkan sistem persamaan pembezaan separa ke dalam sistem
pembezaan biasa
bukan linear. Persamaan pembezaan biasa bukan linear dengan syarat sempadan diselesaikan secara berangka dengan prosedur bvp4c dalam perisian simbolik, MATLAB.
Pengiraan matematik
telah mendedahkan bahawa peningkatan dalam parameter gerakan Brownian
sepadan dengan daya termoforetik yang lebih kuat yang menggalakkan pengangkutan nanopartikel daripada lembaran dua-paksi panas ke cecair
statik. Hal ini
meningkatkan lapisan sempadan pecahan isi padu nanopartikel.
Suhu cecair
dan ketebalan lapisan
sempadan haba
berkurangan dengan nisbah kadar regangan
yang semakin meningkat
pada lembaran dua
paksi. Simulasi
terkini adalah berkaitan dalam pembuatan bio-bahan nano dan peningkatan
media haba untuk
sel sel bahan
api yang diilhami
bio.
Kata kunci: Gelincir
anistropi; gelincir
haba; gelincir jisim; mikroorganisma; nanobendalir; bioperolakan
REFERENCES
Abdul
Latiff, N.A., Uddin, M.J., Bég,
O.A. & Ismail, A.I.M. 2016. Unsteady forced bioconvection
slip flow of a micropolar nanofluid
from a stretching/shrinking sheet. Proceedings of the Institution
of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering
and Nanosystems 230(4): 177-187.
Akbar,
N.S., Tripathi, D., Bég,
O.A. & Khan, Z.H. 2016. MHD dissipative flow and heat transfer
of Casson fluids due to metachronal
wave propulsion of beating cilia with thermal and velocity slip
effects under an oblique magnetic field. Acta
Astronautica 128: 1-12.
Akbarzadeh, M., Rashidi,
S., Karimi, N. & Ellahi,
R. 2018. Convection of heat and thermodynamic irreversibilities
in two-phase, turbulent nanofluid
flows in solar heaters by corrugated absorber plates. Advanced
Powder Technology 29(9): 2243-2254.
Alamri, Sultan, Z., Ellahi,
R., Shehzad, N. & Zeeshan,
A. 2019. Convective radiative plane Poiseuille
flow of nanofluid through porous medium
with slip: An application of Stefan blowing. Journal of Molecular
Liquids 273: 292-304.
Amirsom, N.A., Uddin, M.J. & Ismail, A.I.M.
2016. Three dimensional stagnation point flow of bionanofluid
with variable transport properties. Alexandria Engineering
Journal 55(3): 1983-1993.
Aziz,
R.C., Hashim, I. & Abbasbandy,
S. 2018. Flow and heat transfer in a nanofluid
thin film over an unsteady stretching sheet. Sains
Malaysiana 47(7): 1599-1605.
Bég, O.A., Md Basir,
M.F., Uddin, M.J. & Ismail, A.I.M. 2017. Numerical study
of slip effects on unsteady asymmetric bioconvective
nanofluid flow in a porous microchannel
with an expanding/contracting upper wall using buongiorno’s model. Journal of Mechanics in Medicine and
Biology 17(03): 1750059.
Begum,
N., Siddiqa, S. & Hossain, M.A.
2017. Nanofluid bioconvection with variable
thermophysical properties. Journal
of Molecular Liquids 231: 325-332.
Buongiorno, J. 2006. Convective transport in nanofluids. Journal of Heat Transfer 128(3): 240-250.
Chamkha, A.J. & Aly, A.M. 2010. MHD free convection
flow of a nanofluid past a vertical
plate in the presence of heat generation or absorption effects.
Chemical Engineering Communications 198(3): 425-441.
Chamkha, A.J., Modather
Mohamed, M.M.E.L., Saber, K. & Rashad, A.M. 2012a. Radiative
effects on boundary-layer flow of a nanofluid
on a continuously moving or fixed permeable surface. Recent
Patents on Mechanical Engineering 5(3): 176-183.
Chamkha, A.J., Abbasbandy,
S., Rashad, A.M. & Vajravelu,
K. 2012b. Radiation effects on mixed convection over a wedge
embedded in a porous medium filled with a nanofluid.
Transport in Porous Media 91(1): 261-279.
Chen,
C.Y., Chen, Q.D. & Li, W.L. 2013. Characteristics of journal
bearings with anisotropic slip. Tribology International 61:
144-155.
Choi,
S.U. & Eastman, J. 1995. Enhancing thermal conductivity
of fluids with nanoparticles. ASME International Mechanical
Engineering Congress & Exhibition. American Society of
Mechanical Engineers, San Francisco 196525: 12-17.
Hassan,
M., Marin, Alsharif, M.A. & Ellahi,
R. 2018a. Convective heat transfer flow of nanofluid
in a porous medium over wavy surface. Physics Letters A 382(38):
2749-2753.
Hassan,
M., Mari, M., Ellahi, R. & Alamri,
S.Z. 2018b. Exploration of convective heat transfer and flow
characteristics synthesis by Cu–Ag/water hybrid-nanofluids.
Heat Transfer Research 49(18): 1837-1848.
Hassan,
M., Zeeshan, A., Majeed,
A. & Ellahi, R. 2017. Particle
shape effects on ferrofuids flow and heat transfer under influence of low oscillating
magnetic field. Journal of Magnetism and Magnetic Materials
443: 36-44.
Hunt,
B.R., Lipsman, R.L. & Rosenberg,
J.M. 2014. A Guide to MATLAB®: For Beginners and Experienced
Users. 3rd ed. Cambridge: Cambridge University Press.
Hussain,
F., Ellahi, R. & Zeeshan,
A. 2018. Mathematical models of electro-magnetohydrodynamic
multiphase flows synthesis with nano-sized
hafnium particles. Applied Sciences 8(2): 275.
Jamaludin, A., Nazar, R. & Pop, I. 2018. Ingham problem for mixed convection
flow of a nanofluid over a moving
vertical plate with suction and injection effects. Sains
Malaysiana 47(9): 2213-2221.
Jao, H., Chang, K., Chu, L.M. & Li, W. 2016. A lubrication theory
for anisotropic slips and flow rheology. Tribology Transactions
59(2): 252-266.
Khan,
J.A., Mustafa, M., Hayat, T., Sheikholeslami,
M. & Alsaedi, A. 2015a. Three-dimensional
flow of nanofluid induced by an exponentially stretching sheet: An
application to solar energy. PLoS
ONE 10(3): e0116603.
Khan,
J.A., Mustafa, M., Hayat, T. & Alsaedi,
A. 2015b. Three-dimensional flow of nanofluid
over a non-linearly stretching sheet: An application to solar
energy. International Journal of Heat and Mass Transfer 86:
158-164.
Khan,
W.A., Uddin, M.J. & Ismail, A.I.M. 2013. Free convection
of non-Newtonian nanofluids in porous media with gyrotactic
microorganisms. Transport in Porous Media 97(2): 241-252.
Kuznetsov, A.V. 2012. Nanofluid
bioconvection: Interaction of microorganisms
oxytactic upswimming, nanoparticle
distribution, and heating/cooling from below. Theoretical
and Computational Fluid Dynamics 26 (1-4): 291-310.
Kuznetsov, A.V. & Avramenko,
A.A. 2004. Effect of small particles on this stability of bioconvection
in a suspension of gyrotactic microorganisms
in a layer of finite depth. International Communications
in Heat and Mass Transfer 31(1): 1-10.
Liu,
I. & Andersson, H.I. 2008. Heat
transfer over a bidirectional stretching sheet with variable
thermal conditions. International Journal of Heat and Mass
Transfer 51(15-16): 4018-4024.
Liu,
I., Wang, H. & Peng, Y. 2013. Flow and heat transfer for
three-dimensional flow over an exponentially stretching surface.
Chemical Engineering Communications 200(2): 253-268.
Mahat, R., Rawi, N.A., Mohd
Kasim, A.R. & Shafie,
S. 2018. Mixed convection flow of viscoelastic nanofluid
past a horizontal circular cylinder with viscous dissipation.
Sains Malaysiana 47(7):
1617-1623.
Majeed, A., Zeeshan,
A., Alamri, S.Z. & Ellahi,
R. 2018. Heat transfer analysis in ferromagnetic viscoelastic
fluid flow over a stretching sheet with suction. Neural Computing
and Applications 30(6): 1947-1955.
Maqbool, K., Bég, O.A.,
Sohail, A. & Idreesa,
S. 2016. Analytical solutions for wall slip effects on magnetohydrodynamic
oscillatory rotating plate and channel flows in porous media
using a fractional Burgers viscoelastic model. The European
Physical Journal Plus 131(5): 140.
Md Basir, M.F., Uddin, M.J., Ismail, A.I.M.
& Bég, O.A. 2016. Nanofluid
slip flow over a stretching cylinder with Schmidt and Péclet
number effects. AIP Advances 6(5): 055316.
Michaelides, E.E. 2015. Brownian movement and thermophoresis
of nanoparticles in liquids. International Journal of Heat
and Mass Transfer 81: 179-187.
Mustafa,
M., Mushtaq, A., Hayat, T. & Alsaedi,
A. 2015. Radiation effects in three-dimensional flow over a
bi-directional exponentially stretching sheet. Journal of
the Taiwan Institute of Chemical Engineers 47: 43-49.
Prasad,
V.R., Rao, A.S., Reddy, N.B., Vasu, B. & Bég,
O.A. 2013. Modelling laminar transport phenomena in a Casson
rheological fluid from a horizontal circular cylinder with partial
slip. Proceedings of the Institution of Mechanical Engineers,
Part E: Journal of Process Mechanical Engineering 227(4):
309-326.
Raees, A., Raees-ul-Haq, M., Xu, H. & Sun,
Q. 2016. Three-dimensional stagnation flow of a nanofluid
containing both nanoparticles and microorganisms on a moving
surface with anisotropic slip. Applied Mathematical Modelling
40(5-6): 4136-4150.
Rao,
A.S., Prasad, V.R., Harshavalli, K.
& Beg, O.A. 2016. Thermal radiation effects on non-Newtonian
fluid in a variable porosity regime with partial slip. Journal
of Porous Media 19(4): 313-329.
Rashad,
A.M. 2017. Impact of anisotropic slip on transient three dimensional
MHD flow of ferrofluid over an inclined
radiate stretching surface. Journal of the Egyptian Mathematical
Society 25(2): 230-237.
Rashidi, S., Akar, S.,
Bovand, M. & Ellahi, R. 2018.
Volume of fluid model to simulate the nanofluid
flow and entropy generation in a single slope solar still. Renewable
Energy 115: 400-410.
Saidur, R., Leong, K.Y. & Mohammad, H.A. 2011.
A review on applications and challenges of nanofluids.
Renewable and Sustainable Energy Reviews 15(3): 1646-1668.
Shehzad, N., Zeeshan,
A. & Ellahi, R. 2018. Electroosmotic
flow of MHD power law Al2O3-PVC nanouid
in a horizontal channel: Couette-Poiseuille flow model. Communications in Theoretical
Physics 69(6): 655-666.
Siddiqa, S., Begum, N., Saleem,
S., Hossain, M.A. & Gorla, R.S.R. 2016. Numerical solutions
of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone. International
Journal of Heat and Mass Transfer 101: 608-613.
Soid, S.K., Ishak, A. & Pop, I. 2018. MHD
stagnation-point flow over a stretching/shrinking sheet in a
Micropolar fluid with a slip boundary. Sains
Malaysiana 47(11): 2907-2916.
Sokolov, A., Goldstein, R.E., Feldchtein,
F.I. & Aranson, I.S. 2009. Enhanced
mixing and spatial instability in concentrated bacterial suspensions.
Physical Review E 80(3): 031903.
Tripathi, D., Bég, O.A.
& Curiel-Sosa, J.L. 2014. Homotopy
semi-numerical simulation of peristaltic flow of generalised
Oldroyd-B fluids with slip effects.
Computer Methods in Biomechanics and Biomedical Engineering
17(4): 433-442.
Tsai,
T.H., Liou, D.S., Kuo,
L.S. & Chen, P.H. 2009. Rapid mixing between ferro-nanofluid
and water in a semi-active Y-type micromixer.
Sensors and Actuators A: Physical 153(2): 267-273.
Turkyilmazoglu, M. 2015. Exact multiple solutions
for the slip flow and heat transfer in a converging channel.
Journal of Heat Transfer 137(10): 101301.
Uddin,
M.J., Khan, W.A., Ismail, A.I.M. & Bég,
O.A. 2016. Computational study of three-dimensional stagnation
point nanofluid bioconvection flow on
a moving surface with anisotropic slip and thermal jump effect.
Journal of Heat Transfer 138(10): 104502.
Uddin,
M.J., Bég, O.A. & Ismail, A.I.M.
2015. Radiative convective nanofluid
flow past a stretching/shrinking sheet with slip effects. Journal
of Thermophysics and Heat Transfer
29(3): 513-523.
Uddin,
M.J., Khan, W.A. & Ismail, A.I.M. 2013. Effect of dissipation
on free convective flow of a non-Newtonian nanofluid
in a porous medium with gyrotactic
microorganisms. Proceedings of the Institution of Mechanical
Engineers, Part N: Journal of Nanoengineering and Nanosystems
227(1): 11-18.
Wang,
C.Y. 2015. Uniform flow over a bi-axial stretching surface.
Journal of Fluids Engineering 137(8): 084502.
Wang, C.Y. 2013. Stagnation
flow on a plate with anisotropic slip. European Journal of
Mechanics-B/Fluids 38: 73-77.
Wang, C.Y. 2011. A fluid film sprayed on a three-dimensional
stretching/shrinking sheet. Fluid Dynamics Research 43(5):
055501.
Webb, R.L. &
Kim, N. 2004. Principles Enhanced Heat Trans. New York:
Garland Science.
Xu, H. & Pop,
I. 2012. Fully developed mixed convection flow in a vertical
channel filled with nanofluids. International
Communications in Heat and Mass Transfer 39(8): 1086- 1092.
Zeeshan, A., Ijaz, N., Abbas, T. & Ellahi,
R. 2018. The sustainable characteristic of bio-bi-phase flow
of peristaltic transport of MHD Jeffrey fluid in the human body.
Sustainability 10(8): 2671.
Zokri, S.M., Arifin, N.S., Mohamed, M.K.A., Kasim,
A.R.M., Mohammad, N.F. & Salleh,
M.Z. 2018. Mathematical model of mixed convection boundary layer
flow over a horizontal circular cylinder filled in a Jeffrey
fluid with viscous dissipation effect. Sains Malaysiana 47(7):
1607-1615.
*Corresponding author; email: mfaisalmbasir@usm.my