Sains Malaysiana 48(5)(2019): 1137–1149

http://dx.doi.org/10.17576/jsm-2019-4805-23

 

Three-Dimensional Bioconvection Nanofluid Flow from a Bi-Axial Stretching Sheet with Anisotropic Slip

(Aliran Nanobendalir Bioperolakan Tiga Matra daripada Lembaran Regangan Dua Paksi dengan Gelincir Anisotropi)

 

NUR ARDIANA AMIRSOM1, M.J. UDDIN2, MD. FAISAL MD BASIR1*, A.I.M ISMAIL1, O. ANWAR BÉG3 & ALI KADIR3

 

1School of Mathematics Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

2Department of Mathematics, American International University- Bangladesh, Kuratoli, Dhaka, 1229, Bangladesh

 

3Aeronautical and Mechanical Engineering Department, School of Computing, Science and Engineering, Newton Building, University of Salford, M54WT, United Kingdom

 

Received: 24 December 2018/Accepted: 16 March 2019

 

ABSTRACT

A theoretical study is presented for three-dimensional flow of bioconvection nanofluids containing gyrotactic micro-organisms over a bi-axial stretching sheet. The effects of anisotropic slip, thermal jump and mass slip are considered in the mathematical model. Suitable similarity transformations are used to reduce the partial differential equation system into a nonlinear ordinary differential system. The transformed nonlinear ordinary differential equations with appropriate transformed boundary conditions are solved numerically with the bvp4c procedure in the symbolic software, MATLAB. The mathematical computations showed that an increase in Brownian motion parameter corresponds to a stronger thermophoretic force which encourages transport of nanoparticles from the hot bi-axial sheet to the quiescent fluid. This increases the nanoparticle volume fraction boundary layer. Fluid temperature and thermal boundary layer thickness are decreased with increasing stretching rate ratio of the bi-axial sheet. The present simulation is of relevance in the fabrication of bio-nanomaterials and thermally-enhanced media for bio-inspired fuel cells.

 

Keywords: Anisotropic slip; bioconvection; mass slip; microorganisms; nanofluids, thermal slip

 

ABSTRAK

Satu kajian secara teori dibentangkan untuk aliran tiga matra nanobendalir bioperolakan yang mengandungi mikroorganisma girotaktik yang melalui lembaran regangan dua-paksi. Kesan gelincir anisotropi, haba dan jisim telah dipertimbangkan dalam model matematik. Transformasi persamaan yang sesuai digunakan untuk menurunkan sistem persamaan pembezaan separa ke dalam sistem pembezaan biasa bukan linear. Persamaan pembezaan biasa bukan linear dengan syarat sempadan diselesaikan secara berangka dengan prosedur bvp4c dalam perisian simbolik, MATLAB. Pengiraan matematik telah mendedahkan bahawa peningkatan dalam parameter gerakan Brownian sepadan dengan daya termoforetik yang lebih kuat yang menggalakkan pengangkutan nanopartikel daripada lembaran dua-paksi panas ke cecair statik. Hal ini meningkatkan lapisan sempadan pecahan isi padu nanopartikel. Suhu cecair dan ketebalan lapisan sempadan haba berkurangan dengan nisbah kadar regangan yang semakin meningkat pada lembaran dua paksi. Simulasi terkini adalah berkaitan dalam pembuatan bio-bahan nano dan peningkatan media haba untuk sel sel bahan api yang diilhami bio.

 

Kata kunci: Gelincir anistropi; gelincir haba; gelincir jisim; mikroorganisma; nanobendalir; bioperolakan

REFERENCES

Abdul Latiff, N.A., Uddin, M.J., Bég, O.A. & Ismail, A.I.M. 2016. Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems 230(4): 177-187.

Akbar, N.S., Tripathi, D., Bég, O.A. & Khan, Z.H. 2016. MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field. Acta Astronautica 128: 1-12.

Akbarzadeh, M., Rashidi, S., Karimi, N. & Ellahi, R. 2018. Convection of heat and thermodynamic irreversibilities in two-phase, turbulent nanofluid flows in solar heaters by corrugated absorber plates. Advanced Powder Technology 29(9): 2243-2254.

Alamri, Sultan, Z., Ellahi, R., Shehzad, N. & Zeeshan, A. 2019. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: An application of Stefan blowing. Journal of Molecular Liquids 273: 292-304.

Amirsom, N.A., Uddin, M.J. & Ismail, A.I.M. 2016. Three dimensional stagnation point flow of bionanofluid with variable transport properties. Alexandria Engineering Journal 55(3): 1983-1993.

Aziz, R.C., Hashim, I. & Abbasbandy, S. 2018. Flow and heat transfer in a nanofluid thin film over an unsteady stretching sheet. Sains Malaysiana 47(7): 1599-1605.

Bég, O.A., Md Basir, M.F., Uddin, M.J. & Ismail, A.I.M. 2017. Numerical study of slip effects on unsteady asymmetric bioconvective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using buongiorno’s model. Journal of Mechanics in Medicine and Biology 17(03): 1750059.

Begum, N., Siddiqa, S. & Hossain, M.A. 2017. Nanofluid bioconvection with variable thermophysical properties. Journal of Molecular Liquids 231: 325-332.

Buongiorno, J. 2006. Convective transport in nanofluids. Journal of Heat Transfer 128(3): 240-250.

Chamkha, A.J. & Aly, A.M. 2010. MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects. Chemical Engineering Communications 198(3): 425-441.

Chamkha, A.J., Modather Mohamed, M.M.E.L., Saber, K. & Rashad, A.M. 2012a. Radiative effects on boundary-layer flow of a nanofluid on a continuously moving or fixed permeable surface. Recent Patents on Mechanical Engineering 5(3): 176-183.

Chamkha, A.J., Abbasbandy, S., Rashad, A.M. & Vajravelu, K. 2012b. Radiation effects on mixed convection over a wedge embedded in a porous medium filled with a nanofluid. Transport in Porous Media 91(1): 261-279.

Chen, C.Y., Chen, Q.D. & Li, W.L. 2013. Characteristics of journal bearings with anisotropic slip. Tribology International 61: 144-155.

Choi, S.U. & Eastman, J. 1995. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exhibition. American Society of Mechanical Engineers, San Francisco 196525: 12-17.

Hassan, M., Marin, Alsharif, M.A. & Ellahi, R. 2018a. Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Physics Letters A 382(38): 2749-2753.

Hassan, M., Mari, M., Ellahi, R. & Alamri, S.Z. 2018b. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transfer Research 49(18): 1837-1848.

Hassan, M., Zeeshan, A., Majeed, A. & Ellahi, R. 2017. Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. Journal of Magnetism and Magnetic Materials 443: 36-44.

Hunt, B.R., Lipsman, R.L. & Rosenberg, J.M. 2014. A Guide to MATLAB®: For Beginners and Experienced Users. 3rd ed. Cambridge: Cambridge University Press.

Hussain, F., Ellahi, R. & Zeeshan, A. 2018. Mathematical models of electro-magnetohydrodynamic multiphase flows synthesis with nano-sized hafnium particles. Applied Sciences 8(2): 275.

Jamaludin, A., Nazar, R. & Pop, I. 2018. Ingham problem for mixed convection flow of a nanofluid over a moving vertical plate with suction and injection effects. Sains Malaysiana 47(9): 2213-2221.

Jao, H., Chang, K., Chu, L.M. & Li, W. 2016. A lubrication theory for anisotropic slips and flow rheology. Tribology Transactions 59(2): 252-266.

Khan, J.A., Mustafa, M., Hayat, T., Sheikholeslami, M. & Alsaedi, A. 2015a. Three-dimensional flow of nanofluid induced by an exponentially stretching sheet: An application to solar energy. PLoS ONE 10(3): e0116603.

Khan, J.A., Mustafa, M., Hayat, T. & Alsaedi, A. 2015b. Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy. International Journal of Heat and Mass Transfer 86: 158-164.

Khan, W.A., Uddin, M.J. & Ismail, A.I.M. 2013. Free convection of non-Newtonian nanofluids in porous media with gyrotactic microorganisms. Transport in Porous Media 97(2): 241-252.

Kuznetsov, A.V. 2012. Nanofluid bioconvection: Interaction of microorganisms oxytactic upswimming, nanoparticle distribution, and heating/cooling from below. Theoretical and Computational Fluid Dynamics 26 (1-4): 291-310.

Kuznetsov, A.V. & Avramenko, A.A. 2004. Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. International Communications in Heat and Mass Transfer 31(1): 1-10.

Liu, I. & Andersson, H.I. 2008. Heat transfer over a bidirectional stretching sheet with variable thermal conditions. International Journal of Heat and Mass Transfer 51(15-16): 4018-4024.

Liu, I., Wang, H. & Peng, Y. 2013. Flow and heat transfer for three-dimensional flow over an exponentially stretching surface. Chemical Engineering Communications 200(2): 253-268.

Mahat, R., Rawi, N.A., Mohd Kasim, A.R. & Shafie, S. 2018. Mixed convection flow of viscoelastic nanofluid past a horizontal circular cylinder with viscous dissipation. Sains Malaysiana 47(7): 1617-1623.

Majeed, A., Zeeshan, A., Alamri, S.Z. & Ellahi, R. 2018. Heat transfer analysis in ferromagnetic viscoelastic fluid flow over a stretching sheet with suction. Neural Computing and Applications 30(6): 1947-1955.

Maqbool, K., Bég, O.A., Sohail, A. & Idreesa, S. 2016. Analytical solutions for wall slip effects on magnetohydrodynamic oscillatory rotating plate and channel flows in porous media using a fractional Burgers viscoelastic model. The European Physical Journal Plus 131(5): 140.

Md Basir, M.F., Uddin, M.J., Ismail, A.I.M. & Bég, O.A. 2016. Nanofluid slip flow over a stretching cylinder with Schmidt and Péclet number effects. AIP Advances 6(5): 055316.

Michaelides, E.E. 2015. Brownian movement and thermophoresis of nanoparticles in liquids. International Journal of Heat and Mass Transfer 81: 179-187.

Mustafa, M., Mushtaq, A., Hayat, T. & Alsaedi, A. 2015. Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet. Journal of the Taiwan Institute of Chemical Engineers 47: 43-49.

Prasad, V.R., Rao, A.S., Reddy, N.B., Vasu, B. & Bég, O.A. 2013. Modelling laminar transport phenomena in a Casson rheological fluid from a horizontal circular cylinder with partial slip. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 227(4): 309-326.

Raees, A., Raees-ul-Haq, M., Xu, H. & Sun, Q. 2016. Three-dimensional stagnation flow of a nanofluid containing both nanoparticles and microorganisms on a moving surface with anisotropic slip. Applied Mathematical Modelling 40(5-6): 4136-4150.

Rao, A.S., Prasad, V.R., Harshavalli, K. & Beg, O.A. 2016. Thermal radiation effects on non-Newtonian fluid in a variable porosity regime with partial slip. Journal of Porous Media 19(4): 313-329.

Rashad, A.M. 2017. Impact of anisotropic slip on transient three dimensional MHD flow of ferrofluid over an inclined radiate stretching surface. Journal of the Egyptian Mathematical Society 25(2): 230-237.

Rashidi, S., Akar, S., Bovand, M. & Ellahi, R. 2018. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renewable Energy 115: 400-410.

Saidur, R., Leong, K.Y. & Mohammad, H.A. 2011. A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews 15(3): 1646-1668.

Shehzad, N., Zeeshan, A. & Ellahi, R. 2018. Electroosmotic flow of MHD power law Al2O3-PVC nanouid in a horizontal channel: Couette-Poiseuille flow model. Communications in Theoretical Physics 69(6): 655-666.

Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. & Gorla, R.S.R. 2016. Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone. International Journal of Heat and Mass Transfer 101: 608-613.

Soid, S.K., Ishak, A. & Pop, I. 2018. MHD stagnation-point flow over a stretching/shrinking sheet in a Micropolar fluid with a slip boundary. Sains Malaysiana 47(11): 2907-2916.

Sokolov, A., Goldstein, R.E., Feldchtein, F.I. & Aranson, I.S. 2009. Enhanced mixing and spatial instability in concentrated bacterial suspensions. Physical Review E 80(3): 031903.

Tripathi, D., Bég, O.A. & Curiel-Sosa, J.L. 2014. Homotopy semi-numerical simulation of peristaltic flow of generalised Oldroyd-B fluids with slip effects. Computer Methods in Biomechanics and Biomedical Engineering 17(4): 433-442.

Tsai, T.H., Liou, D.S., Kuo, L.S. & Chen, P.H. 2009. Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sensors and Actuators A: Physical 153(2): 267-273.

Turkyilmazoglu, M. 2015. Exact multiple solutions for the slip flow and heat transfer in a converging channel. Journal of Heat Transfer 137(10): 101301.

Uddin, M.J., Khan, W.A., Ismail, A.I.M. & Bég, O.A. 2016. Computational study of three-dimensional stagnation point nanofluid bioconvection flow on a moving surface with anisotropic slip and thermal jump effect. Journal of Heat Transfer 138(10): 104502.

Uddin, M.J., Bég, O.A. & Ismail, A.I.M. 2015. Radiative convective nanofluid flow past a stretching/shrinking sheet with slip effects. Journal of Thermophysics and Heat Transfer 29(3): 513-523.

Uddin, M.J., Khan, W.A. & Ismail, A.I.M. 2013. Effect of dissipation on free convective flow of a non-Newtonian nanofluid in a porous medium with gyrotactic microorganisms. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 227(1): 11-18.

Wang, C.Y. 2015. Uniform flow over a bi-axial stretching surface. Journal of Fluids Engineering 137(8): 084502.

Wang, C.Y. 2013. Stagnation flow on a plate with anisotropic slip. European Journal of Mechanics-B/Fluids 38: 73-77.

Wang, C.Y. 2011. A fluid film sprayed on a three-dimensional stretching/shrinking sheet. Fluid Dynamics Research 43(5): 055501.

Webb, R.L. & Kim, N. 2004. Principles Enhanced Heat Trans. New York: Garland Science.

Xu, H. & Pop, I. 2012. Fully developed mixed convection flow in a vertical channel filled with nanofluids. International Communications in Heat and Mass Transfer 39(8): 1086- 1092.

Zeeshan, A., Ijaz, N., Abbas, T. & Ellahi, R. 2018. The sustainable characteristic of bio-bi-phase flow of peristaltic transport of MHD Jeffrey fluid in the human body. Sustainability 10(8): 2671.

Zokri, S.M., Arifin, N.S., Mohamed, M.K.A., Kasim, A.R.M., Mohammad, N.F. & Salleh, M.Z. 2018. Mathematical model of mixed convection boundary layer flow over a horizontal circular cylinder filled in a Jeffrey fluid with viscous dissipation effect. Sains Malaysiana 47(7): 1607-1615.

 

*Corresponding author; email: mfaisalmbasir@usm.my

 

 

 

 

previous